98
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Initial structural transformation of Mg-Sm binary alloys during early isothermal aging

ORCID Icon, , &
Pages 2102-2122 | Received 12 Apr 2022, Accepted 31 Jul 2023, Published online: 26 Aug 2023

References

  • J. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A. 43 (2012), pp. 3891–3939. doi:10.1007/s11661-012-1217-2.
  • C. Su, D. Li, A.A. Luo, T. Ying, and X. Zeng, Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study, J. Alloys Compd. 747 (2018), pp. 431–437. doi:10.1016/j.jallcom.2018.03.070.
  • Y. Xu, F. Gensch, Z. Ren, K.U. Kainer, and N. Hort, Effects of Gd solutes on hardness and yield strength of Mg alloys, Prog. Nat. Sci.: Mater. Int. 28 (2018), pp. 724–730. doi:10.1016/j.pnsc.2018.10.002.
  • J. Zhang, S. Liu, R. Wu, L. Hou, and M. Zhang, Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems, J. Magnes. Alloys 6 (2018), pp. 277–291. doi:10.1016/j.jma.2018.08.001.
  • T. Zhang, H. Cui, X. Cui, E. Zhao, Y. Pan, R. Feng, Q. Jia, and J. Zhao, Ductility enhancement in an as-extruded Mg-5.5Zn-0.8Zr alloy by Sm alloying, J. Alloys Compd. 784 (2019), pp. 1130–1138. doi:10.1016/j.jallcom.2019.01.110.
  • J. Zheng, Q. Wang, Z. Jin, and T. Peng, Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg–0.5Zn–0.4Zr based alloys, Mater. Sci. Eng. A. 527 (2010), pp. 1677–1685. doi:10.1016/j.msea.2009.10.067.
  • K. Guan, B. Li, Q. Yang, X. Qiu, Z. Tian, D. Zhang, D. Zhang, X. Niu, W. Sun, X. Liu, and J. Meng, Effects of 1.5 wt% samarium (Sm) addition on microstructures and tensile properties of a Mg−6.0Zn−0.5Zr alloy, J. Alloys Compd. 735 (2018), pp. 1737–1749. doi:10.1016/j.jallcom.2017.11.315.
  • H. Son, J. Lee, D. Kim, K. Yoshimi, and K. Maruyama, Effects of samarium (Sm) additions on the microstructure and mechanical properties of as-cast and hot-extruded Mg-5wt%Al-3wt%Ca-based alloys, J. Alloys Compd. 473 (2009), pp. 446–452. doi:10.1016/j.jallcom.2008.06.016.
  • D. Li, Q. Wang, and W. Ding, Effects of samarium on microstructure and mechanical properties of Mg–Y–Sm–Zr alloys during thermo-mechanical treatments, J. Mater Sci. 44 (2009), pp. 3049–3056. doi:10.1007/s10853-009-3403-1.
  • K. Li, Q. Li, X. Jing, J. Chen, X. Zhang, and Q. Zhang, Effects of Sm addition on microstructure and mechanical properties of Mg–6Al–0.6Zn alloy, Scripta Mater. 60 (2009), pp. 1101–1104. doi:10.1016/j.scriptamat.2009.02.048.
  • M. Sun, X. Hu, L. Peng, P. Fu, and Y. Peng, Effects of Sm on the grain refinement, microstructures and mechanical properties of AZ31 magnesium alloy, Mater. Sci. Eng. A. 620 (2015), pp. 89–96. doi:10.1016/j.msea.2014.09.106.
  • J. Liu, S. Han, Y. Li, X. Zhao, S. Yang, and Y. Zhao, Cooperative effects of Sm and Mg on electrochemical performance of La–Mg–Ni-based alloys with A 2 B 7 - and A 5 B 19 -type super-stacking structure, Int. J. Hydrogen Energy 40 (2015), pp. 1116–1127. doi:10.1016/j.ijhydene.2014.11.024.
  • Q.A. Li, X. Li, Q. Zhang, and J. Chen, Effect of rare-earth element Sm on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy, Rare Met. 29 (2010), pp. 557–560. doi:10.1007/s12598-010-0168-2.
  • Z. Hu, R.L. Liu, S.K. Kairy, X. Li, H. Yan, and N. Birbilis, Effect of Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91, Corros. Sci. 149 (2019), pp. 144–152. doi:10.1016/j.corsci.2019.01.024.
  • S. Lyu, G. Li, T. Hu, R. Zheng, W. Xiao, and C. Ma, A new cast Mg-Y-Sm-Zn-Zr alloy with high hardness, Mater. Lett. 217 (2018), pp. 79–82. Doi:10.1016/j.matlet.2018.01.041.
  • Y. Gao, Q. Wang, J. Gu, Y. Zhao, Y. Tong, and J. Kaneda, Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy, J. Rare Earth 26 (2008), pp. 298–302. doi:10.1016/S1002-0721(08)60084-8.
  • J.F. Nie and B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy, Acta Mater. 48 (2000), pp. 1691–1703.
  • D. Li, Q. Wang, and W. Ding, Characterization of phases in Mg–4Y–4Sm–0.5Zr alloy processed by heat treatment, Mater. Sci. Eng.: A 428 (2006), pp. 295–300. doi:10.1016/j.msea.2006.05.011.
  • G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, and G. Riontino, Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy, Acta Mater. 59 (2011), pp. 4151–4158. doi:10.1016/j.actamat.2011.03.038.
  • N. Liu, Z. Zhang, L. Peng, and W. Ding, Microstructure evolution and mechanical properties of Mg-Gd-Sm-Zr alloys, Mater. Sci. Eng. A. 627 (2015), pp. 223–229. doi:10.1016/j.msea.2014.12.114.
  • B. Smola and I. Stulìková, Equilibrium and transient phases in Mg–Y–Nd ternary alloys, J. Alloys Compd. 381 (2004), pp. L1–L2. doi:10.1016/j.jallcom.2004.02.049.
  • M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, Characterization of β′ phase precipitates in an Mg-5 at%Gd alloy aged in a peak hardness condition, studied by high-angle annular detector dark-field scanning transmission electron microscopy, Mater. Trans. 47(8) (2006), pp. 2109–2112. doi:10.2320/matertrans.47.2109.
  • J.G. Wang, L.M. Hsiung, T.G. Nieh, and M. Mabuchi, Creep of a heat treated Mg–4Y–3RE alloy, Mater. Sci. Eng. A. 315 (2001), pp. 81–88.
  • J. Wang, J. Meng, D. Zhang, and D. Tang, Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys, Mater. Sci. Eng. A. 456 (2007), pp. 78–84. doi:10.1016/j.msea.2006.11.096.
  • S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. Alloys Compd. 421 (2006), pp. 309–313. doi:10.1016/j.jallcom.2005.11.046.
  • J.F. Nie and B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scr. Mater. 40 (1999), pp. 1089–1094.
  • M. Nishijima and K. Hiraga, Structural changes of precipitates in an Mg-5 at%Gd alloy studied by transmission electron microscopy, Mater Trans. 48(1) (2007), pp. 10–15. doi:10.2320/matertrans.48.10.
  • J. Zheng, W. Zhou, and C. Bin, Precipitation in Mg-Sm binary alloy during isothermal ageing: Atomic-scale insights from scanning transmission electron microscopy, Mater. Sci. Eng. A. 669 (2016), pp. 304–311. doi:10.1016/j.msea.2016.05.096.
  • J. Zheng, X. Xu, K. Zhang, and B. Chen, Novel structures observed in Mg–Gd–Y–Zr during isothermal ageing by atomic-scale HAADF-STEM, Mater. Lett. 152 (2015), pp. 287–289. doi:10.1016/j.matlet.2015.03.145.
  • Â Vostry, B. Smola, I. StulõÂkovaÂ, F.v. Buch, and B.L. Mordike, Microstructure evolution in isochronally heat treated Mg-Gd alloys, Phys. Status Solidi A 175 (1999), pp. 491–500.
  • B. Li, J. Dong, Z. Zhang, J.-F. Nie, L. Bourgeois, and L. Peng, On the strengthening precipitate phases and phase transformation of β″/β′ in a Mg-Sm-Zr alloy, Mater. Design 116 (2017), pp. 419–426. doi:10.1016/j.matdes.2016.12.040.
  • C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, and A. Pisch, Hardening precipitation in a Mg–4Y–3RE alloy, Acta Mater. 51 (2003), pp. 5335–5348. doi:10.1016/S1359-6454(03)00391-4.
  • X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, and J.F. Nie, Microstructure evolution in a Mg–15Gd–0.5Zr (wt.%) alloy during isothermal aging at 250°C, Mater. Sci. Eng. A. 431 (2006), pp. 322–327. doi:10.1016/j.msea.2006.06.018.
  • Z. Xu, M. Weyland, and J.F. Nie, Shear transformation of coupled β1/β′ precipitates in Mg–RE alloys: A quantitative study by aberration corrected STEM, Acta Mater. 81 (2014), pp. 58–70. doi:10.1016/j.actamat.2014.06.043.
  • M. Nishijima, K. Hiraga, M. Yamasaki, and Y. Kawamura, Characterization of precipitates in Mg-Sm alloy aged at 200 °C, studied by high-resolution transmission electron microscopy and high-angle annular detector dark-field scanning transmission electron microscopy, Mater Trans. 50 (2009), pp. 1747–1752. doi:10.2320/matertrans.M2009046.
  • A.R. Natarajan, E.L.S. Solomon, B. Puchala, E.A. Marquis, and A. Van der Ven, On the early stages of precipitation in dilute Mg–Nd alloys, Acta Mater. 108 (2016), pp. 367–379. doi:10.1016/j.actamat.2016.01.055.
  • H. Xie, B. Liu, J. Bai, C. Guan, D. Lou, X. Pang, H. Zhao, S. Li, Y. Ren, H. Pan, C. Yang, and G. Qin, Re-recognition of the aging precipitation behavior in the Mg–Sm binary alloy, J. Alloys Compd. 814 (2020), p. 152320. doi:10.1016/j.jallcom.2019.152320.
  • H. Xie, W. Lou, X. Zhao, S. Li, H. Pan, N. Xiao, H. Li, J. Bai, Y. Ren, and G. Qin, Enhanced age-hardening response of the Mg-Sm alloy via alloying with Cd, Mater. Charact. 170 (2020), p. 110669. doi:10.1016/j.matchar.2020.110669.
  • K. Guan, C. Li, Z. Yang, Y. Yu, Q. Yang, W. Zhang, Z. Guan, C. Wang, M. Zha, and H. Wang, Hardening effect and precipitation evolution of an isothermal aged Mg-Sm based alloy, J. Magnes. Alloys (2023). doi:10.1016/j.jma.2023.01.001.
  • A. Issa, J.E. Saal, and C. Wolverton, Formation of high-strength β′ precipitates in Mg–RE alloys: The role of the Mg/β″ interfacial instability, Acta Mater. 83 (2015), pp. 75–83. doi:10.1016/j.actamat.2014.09.024.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996), pp. 15–50. doi:10.1016/0927-0256(96)00008-0.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186. doi:10.1103/PhysRevB.54.11169.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), pp. 1758–1775. doi:10.1103/PhysRevB.59.1758.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi:10.1103/PhysRevLett.77.3865.
  • X. Zhang, J. Lang, Q. Huang, T.C. Germann, Y. Qiao, J. Ding, H. Gao, and S. Du, Electronic structures, mechanical properties and defect formation energies of U3Si5 from density functional theory calculations, Prog. Nuclear Energy (2019), pp. 87–94.
  • D. Shin and C. Wolverton, First-principles study of solute–vacancy binding in magnesium, Acta Mater. 58 (2010), pp. 531–540. doi:10.1016/j.actamat.2009.09.031.
  • P. Paranjape, S.G. Srinivasan, and D. Choudhuri, Correlation between bonding, vacancy migration mechanisms, and creep in model binary and ternary hcp-Mg solid solutions, J. Appl. Phys. 128 (2020), p. 145103. doi:10.1063/5.0018600.
  • M. Fronzi, H. Kimizuka, and S. Ogata, Atomistic investigation of vacancy assisted diffusion mechanism in Mg ternary (Mg–RE–M) alloys, Comp. Mater. Sci. 98 (2015), pp. 76–82. doi:10.1016/j.commatsci.2014.10.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.