92
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nonlinear optical properties of modified Möbius squared potential well: influence of electric and magnetic fields

, , &
Pages 1980-1991 | Received 07 Jul 2023, Accepted 27 Aug 2023, Published online: 20 Sep 2023

References

  • R.H. Xie and J. Gong, Simple three-parameter model potential for diatomic systems: From weakly and strongly bound molecules to metastable molecular ions. Phys. Rev. Lett 95 (2005), pp. 263202.
  • O. Bayrak and I. Boztosun, Bound state solutions of the Hulthén potential by using the asymptotic iteration method. Phys. Scr 76 (2007), pp. 92–96.
  • R. Sever, C. Tezcan, O. Yesiltas, and M. Bucurgat, Exact solution of effective mass Schrödinger equation for the Hulthen potential. Int. J. Theor. Phys 47(9) (2008), pp. 2243–2248.
  • Z.Y. Chen, M. Li, and C.S. Jia, Approximate analytical solutions of the Schrödinger equation with the Manning-Rosen potential model. Mod. Phys. Lett. A 24 (2009), pp. 1863–1874.
  • C.O. Edet, U.S. Okorie, A.T. Ngiangia, and A.N. Ikot, Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Ind. J. Phys 94 (2020), pp. 425–433.
  • J.B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, and C.S. Jia, Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr. J. Mol. Struct 1199 (2020), pp. 126958.
  • S.M. Ikhdair and B.J. Falaye, Approximate analytical solutions to relativistic and nonrelativistic Pöschl–Teller potential with its thermodynamic properties. Chem. Phys 421 (2013), pp. 84–95.
  • L.H. Zhang, X.P. Li, and C.S. Jia, Approximate solutions of the Schrödinger equation with the generalized Morse potential model including the centrifugal term. Int. J. Quantum Chem 111 (2011), pp. 1870–1878.
  • H. Odhiambo Oyoko, N. Porras-Montenegro, S.Y. Lopez, and C.A. Duque, Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs-Ga1-xAlxAs quantum wells. Phys. Stat. Sol. (c) 4 (2007), pp. 298–300.
  • A. Keshavarz and M. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells. Phys. Lett. A 374 (2010), pp. 2675–2680.
  • L. Lu, W. Xie, and H. Hassanabadi, The effects of intense laser on nonlinear properties of shallow donor impurities in quantum dots with the Woods–Saxon potential, J. Lumin 131 (2011), pp. 2538–2543.
  • D.B. Hayrapetyan, E.M. Kazaryan, and H. Kh, Tevosyan, Optical properties of spherical quantum dot with modified Pöschl–Teller potential, Superlattice. Microst 64 (2013), pp. 204–212.
  • F. Ungan, R.L. Restrepo, M.E. Mora-Ramos, A.L. Morales, and C.A. Duque, Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field. Physica B 434 (2014), pp. 26–31.
  • E. Kasapoglu, C.A. Duque, M.E. Mora-Ramos, R.L. Restrepo, F. Ungan, U. Yesilgul, H. Sari, and I. Sokmen, Combined effects of intense laser field, electric and magnetic fields on the nonlinear optical properties of the step-like quantum well. Mater. Chem. Phys 154 (2015), pp. 170–175.
  • K. Batra and V. Prasad, Spherical quantum dot in Kratzer confining potential: Study of linear and nonlinear optical absorption coefficients and refractive index changes. Eur. Phys. J. B 91 (2018), pp. 298.
  • S. Mo, K. Guo, G. Liu, X. He, J. Lan, and Z. Zhou, Exciton effect on the linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells with an external electric field. Thin Solid Films 710 (2020), pp. 138286.
  • O. Bayrak, I. Boztosun, and H. Ciftci, Exact analytical solutions to the Kratzer potential by the asymptotic iteration method. Int. J. Quant. Chem 107 (2007), pp. 540–544.
  • C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, and G.D. Zhang, Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys 137 (2012), pp. 014101.
  • Y. Sun, S. He, and C.S. Jia, Equivalence of the deformed modified Rosen–Morse potential energy model and the Tietz potential energy model. Phys. Scr 87 (2013), pp. 025301.
  • B.J. Falaye, K.J. Oyewumi, and M. Abbas, Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method. Chin. Phys. B 22(11) (2013), pp. 110301.
  • A.D. Antia, A.N. Ikot, H. Hassanabadi, and E. Maghsoodi, Bound state solutions of Klein–Gordon equation with Mobius square plus Yukawa potentials. Indian. J. Phys 87 (2013), pp. 1133–1139.
  • A.N. Ikot, B.H. Yazarloo, S. Zarrinkamar, and H. Hassanabadi, Symmetry limits of (D+1)-dimensional Dirac equation with Möbius square potential. Eur. Phys. J. Plus 129 (2014), pp. 79.
  • E. Maghsoodi, H. Hassanabadi, H. Rahimov, and S. Zarrinkamar, Arbitrary-state solutions of the Dirac equation for a Möbius square potential using the Nikiforov-Uvarov method. Chin. Phys. C 37 (2013), pp. 043105.
  • A.D. Antia, I.E. Essien, E.B. Umoren, and C.C. Eze, Approximate solutions of the non-relativistic Schrödinger equation with inversely quadratic Yukawa plus Mobius square potential via parametric Nikiforov-Uvarov method. Adv. Phys. Theor. Appl. 44 (2015), pp. 1–13.
  • I.B. Okon, O.O. Popoola, E. Omugbe, A.D. Antia, C.N. Isonguyo, and E.E. Ituen, Thermodynamic properties and bound state solutions of Schrodinger equation with Mobius square plus screened-Kratzer potential using Nikiforov-Uvarov method. Comput. Theor. Chem 1196 (2021), pp. 113132.
  • C.A. Onate and J.O. Ojonubah, Eigensolutions of the Schrödinger equation with a class of Yukuwa potentials via supersymmetric approach. J. Theor. Appl. Phys 10 (2016), pp. 21–26.
  • A.N. Ikot, H.P. Obong, T.M. Abbey, S. Zare, M. Ghafourian, and H. Hassanabadi, Bound and scattering state of position dependent mass Klein–Gordon equation with Hulthen plus deformed-type hyperbolic potential. Few-Body Syst. 57 (2016), pp. 807–822.
  • J. Sadeghi, Factorization method and solution of the non-central Modified Kratzer potential. Acta Phys. Pol. A 112 (2007), pp. 23–28.
  • R.M. Pahlavani, H. Rahbar, and M. Ghezelbash, Relativistic Schrödinger wave equation for hydrogen atom using factorization method. Open Journal of Microphysics 3 (2013), pp. 1–7.
  • U.S. Okorie, A.N. Ikot, M.C. Onyeaju, and E.O. Chukwuocha, Bound state solutions of Schrödinger equation with modified Mobius square potential (MMSP) and its thermodynamic properties. J. Mol. Model 24 (2018), pp. 289.
  • H. Ciftci, L.H. Richard, and N. Saad, Asymptotic iteration method for eigenvalue problems. J. Phys. A 36 (2003), pp. 11807–11816.
  • A.J. Sous, Asymptotic iteration method applied to new confining potentials. Pramana 93 (2019), pp. 22.
  • S.H. Dong and G.H. Sun, The series solutions of the non-relativistic equation with the Morse potential. Phys. Lett. A 314 (2003), pp. 261–266.
  • M.R. Setare and E. Karimi, Algebraic approach to the Hulthen potential. Int. J. Theor. Phys 46 (2007), pp. 1381–1388.
  • C.P. Onyenegecha, A.I. Opara, I.J. Njoku, S.C. Udensi, U.M. Ukewuihe, C.J. Okereke, and A. Omame, Analytical solutions of D-dimensional Klein–Gordon equation with modified Mobius squared potential. Results Phys. 25 (2021), pp. 104144.
  • C.P. Onyenegecha, Linear and nonlinear optical properties in spherical quantum dots: Modified Möbius squared potential. Heliyon 8 (2022), pp. e10387.
  • B.H. Yazarloo, H. Hassanabadi, and S. Zarrinkamar, Oscillator strengths based on the Möbius square potential under Schrödinger equation. Eur. Phys. J. Plus 127 (2012), pp. 51.
  • P. Boonserm and M. Visser, Quasi-normal frequencies: Key analytic results. J. High Energ. Phys 1103 (2011), pp. 073.
  • A.N. Ikot, S. Zarrinkamar, E.J. Ibanga, E. Maghsoodi, and H. Hassanabadi, Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM. Chin. Phys. C 38 (2014), pp. 013101.
  • U.S. Okorie, A.N. Ikot, M.U. Ibezim-Ezeani, and H.Y. Abdullah, Diatomic molecules energy spectra for the generalized Mobius square potential model. Int. J. Mod. Phys. B 34 (2020), pp. 2050209.
  • A. Maireche, New relativistic and nonrelativistic model of diatomic molecules and fermionic particles interacting with improved modified Mobius potential in the framework of noncommutative quantum mechanics symmetries. Yanbu J. Eng. Sci. 18(1) (2021), pp. 10–32.
  • D. Yabwa, E.S. Eyube, and Y. Ibrahim, Approximate ℓ-state solution of time independent Schrödinger wave equation with modified Möbius squared potential plus Hulthén potential. FUDMA J. Sci. 4(2) (2020), pp. 425–435.
  • C.P. Onyenegecha, C.A. Onate, O.K. Echendu, A.A. Ibe, and H. Hassanabadi, Solutions of Schrodinger equation for the modified Mobius square plus Kratzer potential. Eur. Phys. J. Plus 135 (2020), pp. 289.
  • I.J. Njoku, E. Onyeocha, C.P. Onyenegecha, M. Onuoha, E.K. Egeonu, and P. Nwaokafor, Quantum information of the modified Mobius squared plus Eckart potential. Int. J. Quantum Chem 123(6) (2023), pp. e27050.
  • U.S. Okorie, A.N. Ikot, C.O. Edet, G.J. Rampho, R. Horchani, and H. Jelassi, Bound and scattering states solutions of the Klein–Gordon equation with generalized Mobius square potential in D-dimensions. Eur. Phys. J. D 75 (2021), pp. 53.
  • A.N. Ikot, E. Maghsoodi, S. Zarrinkamar, and H. Hassanabadi, Relativistic spin and pseudospin symmetries of inversely quadratic Yukawa-like plus Mobius square potentials including a Coulomb-like tensor interaction. Few-Body Syst. 54 (2013), pp. 2027–2040.
  • M.C. Onyeaju, J.O.A. Idiodi, A.N. Ikot, M. Solaimani, and H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Generalized Hulthén potential. Few-Body Syst. 57 (2016), pp. 793–805.
  • A. Turkoglu, Regulation of optical properties by applied external fields for a quantum well with Hulthen potential. Laser Phys. 32 (2022), pp. 035201.
  • Z.H. Zhang, J.H. Yuan, and K.X. Guo, The combined influence of hydrostatic pressure and temperature on nonlinear optical properties of GaAs/Ga0.7Al0.3As Morse quantum well in the presence of an applied magnetic field. Materials 11(5) (2018), pp. 668.
  • S. Sakiroglu, E. Kasapoglu, R.L. Restrepo, C.A. Duque, and I. Sökmen, Intense laser field-induced nonlinear optical properties of Morse quantum well, Phys. Status Solidi B 254(4) (2017), pp. 1600457.
  • F. Ungan, M.K. Bahar, M.G. Barseghyan, L.M. Perez, and D. Laroze, Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential. Optik 236 (2021), pp. 166621.
  • J.B. Xia and W.J. Fan, Electronic structures of superlattices under in-plane magnetic field. Phys. Rev. B 40 (1989), pp. 8508–8515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.