81
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Thermodynamic property of one-dimensional hydrogenic impurity in Nitride semiconductor quantum well

, , , , &
Pages 2179-2205 | Received 24 Jun 2023, Accepted 03 Oct 2023, Published online: 25 Oct 2023

References

  • Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom, and C.M. Lieber, Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano. Lett. 6 (2006), pp. 1468–1473. doi:10.1021/nl060849z
  • M. Nami, R.F. Eller, S. Okur, A.K. Rishinaramangalam, S. Liu, I. Brener, and D.F. Feezell, Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy. Nanotechnology 28 (2017), pp. 025202. doi:10.1088/0957-4484/28/2/025202
  • M. Hetzl, J. Winner, L. Francaviglia, M. Kraut, M. Doblinger, S. Matich, A.F. Morral, and M. Stutzmanna, Surface passivation and self-regulated shell growth in selective area-grown GaN–(Al,Ga)N core–shell nanowires. Nanoscale. 9 (2017), pp. 7179–7188. doi:10.1039/C7NR00802C
  • M. Royo, M. De Luca, R. Rurali, and I. Zardo, A review on III–V core–multishell nanowires: growth, properties, and applications. J. Phys. D: Appl. Phys. 50 (2017), pp. 143001. doi:10.1088/1361-6463/aa5d8e
  • D.H. Wang, X. He, X. Liu, B.H. Chu, W. Liu, and M.M. Jiao, The one-dimensional hydrogenic impurity states confined at one end of the InAs quantum well. Philos. Mag. 102 (2022), pp. 2302–2322. doi:10.1080/14786435.2022.2103197
  • D.H. Wang, J. Zhang, Z.P. Sun, S.F. Zhang, and G. Zhao, Quantum mechanical effects for a hydrogen atom confined in a dielectric spherical microcavity. Chem. Phys. 551 (2021), pp. 111331. doi:10.1016/j.chemphys.2021.111331
  • J. Lee and H.N. Spector, Dielectric response function for a quasi-one-dimensional semiconducting system. J. Appl. Phys. 57 (1985), pp. 366–372. doi:10.1063/1.334816
  • G.W. Bryant, Hydrogenic impurity states in quantum-well wires. Phys. Rev. B. 29 (1984), pp. 6632. doi:10.1103/PhysRevB.29.6632
  • D.S. Chuu, C.M. Hsiao, and W.N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B. 46 (1992), pp. 3898–3905. doi:10.1103/PhysRevB.46.3898
  • G. Allan, C. Delerue, M. Lannoo, and E. Martin, Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites. Phys. Rev. B. 52 (1995), pp. 11982. doi:10.1103/PhysRevB.52.11982
  • N. Porras-Montenegro and S.T. Pe´rez-Merchancano, Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Phys. Rev. B. 46 (1992), pp. 9780. doi:10.1103/PhysRevB.46.9780
  • H. Chen, X.D. Li, and S.X. Zhou, Stark shift of hydrogenic impurity states in a quantum well. Phys. Rev. B. 44 (1991), pp. 6220. doi:10.1103/PhysRevB.44.6220
  • S.V. Branis, G. Li, and K.K. Bajaj, Hydrogenic impurities in quantum wires in the presence of a magnetic field. Phys. Rev. B. 47 (1993), pp. 1316. doi:10.1103/PhysRevB.47.1316
  • M. Şahin, Photoionization cross section and intersublevel transitions in a one- and two-electron spherical quantum dot with a hydrogenic impurity. Phys. Rev. B. 77 (2008), pp. 045317. doi:10.1103/PhysRevB.77.045317
  • J.H. Yuan, Y. Zhang, X.X. Guo, J.J. Zhang, and H. Mo, The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. Physica E 68 (2015), pp. 232–238. doi:10.1016/j.physe.2015.01.006
  • J.Y. Sui, R.Y. Dong, S.Y. Liao, Z.Y. Zhao, Y.B. Wang, and H.F. Zhang, Janus metastructure based on magnetized plasma material with and logic gate and multiple physical quantity detection. Ann. Phys. 535 (2023), pp. 2200509. doi:10.1002/andp.202200509
  • J.Y. Sui, S.Y. Liao, R.Y. Dong, and H.F. Zhang, A janus logic gate with sensing function. Ann. Phys. 535 (2023), pp. 2200661. doi:10.1002/andp.202200661
  • S.H. Ha and J. Zhu, Temperature effect on shallow impurity states in a wurtzite GaN/Al Ga1-N core-shell nanowire. Physica E 122 (2020), pp. 114179. doi:10.1016/j.physe.2020.114179
  • X.L. Wang and V. Voliotis, Epitaxial growth and optical properties of semiconductor quantum wires. J. Appl. Phys. 99 (2006), pp. 121301. doi:10.1063/1.2212056
  • R.R. LaPierre, A.C.E. Chia, S.J. Gibson, C.M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K.M.A. Rahman, III–v nanowire photovoltaics: review of design for high efficiency. Phys. Stat. Sol. RRL 7 (2013), pp. 815–830. doi:10.1002/pssr.201307109
  • M. Mata, X. Zhou, F. Furtmayr, J. Teubert, S. Gradecak, M. Eickhoff, A.F. Morral, and J. Arbiol, A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire. J. Mater. Chem. C 1 (2013), pp. 4300–4312. doi:10.1039/c3tc30556b
  • A. Bao, Group III-nitride nanowires. Mater. Sci. Technol. 33 (2017), pp. 765–776. doi:10.1080/02670836.2016.1192765
  • A.K. Sivadasan, C. Singha, A. Bhattacharyya, and S. Dhara, Interface phonon modes in the [AlN/GaN] 20 and [Al 0.35 Ga 0.65 N/Al 0.55 Ga 0.45 N] 20 2D multi-quantum well structures. Phys. Chem. Chem. Phys. 18 (2016), pp. 29864–29870. doi:10.1039/C6CP05520F
  • Y. Guo, F. Pan, Y. Ren, B. Yao, C. Yang, M. Ye, Y.Y. Wang, J. Li, X. Zhang, J. Yan, J. Yang, and J. Lu, n- and p-type ohmic contacts at monolayer gallium nitride–metal interfaces. Phys. Chem. Chem. Phys. 20 (2018), pp. 24239–24249. doi:10.1039/C8CP04759F
  • A. Kaminska, K. Koronski, P. Strak, K. Sobczak, E. Monroy, and S. Krukowski, Wurtzite quantum well structures under high pressure. J. Appl. Phys. 128 (2020), pp. 050901. doi:10.1063/5.0004919
  • S.J. Guo, C.X. Hu, and H.F. Zhang, Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. Journal of the Optical Society of America B 37 (2020), pp. 2678–2687. doi:10.1364/JOSAB.399048
  • J.Y. Sui, S.Y. Liao, B.X. Li, and H.F. Zhang, High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect. Opt. Lett. 47 (2022), pp. 6065–6068. doi:10.1364/OL.476048
  • C. Chang and X. Li, Nonlinear optical properties in GaAs/Al0.3Ga0.7As quantum dots of inversely quadratic hellmann plus kratzer potential. Eur. Phys. J. D. 76 (2022), pp. 1–8. doi:10.1140/epjd/s10053-022-00453-z
  • R. Loudon, One-dimensional hydrogen atom. P. Roy. Soc. A 472 (2016), pp. 20150534.
  • A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Springer, Basel, 1988.
  • H. de O. Batael, E.D. Filho, J. Chahine, and J.F. da Silva, Geometric phase of wannier–stark ladders in alkaline-earth(-like) atoms. Eur. Phys. J. D 75 (2021), pp. 1–9. doi:10.1140/epjd/s10053-020-00003-5
  • X. Liu, D.H. Wang, X. He, M.C. Fa, B.H. Chu, J. Zhang, and S.F. Zhang, Influence of the spatially inhomogeneous electric field on the thermodynamic property of the particle confined in a quantum well. Phys. Scr. 97 (2022), pp. 105308. doi:10.1088/1402-4896/ac90f9
  • M. Solaimani, Effects of geometry and electric and magnetic fields on the thermal properties of two-dimensional semiconducting nanoporous superlattices. J. Phys. Chem. Solids 149 (2021), pp. 109816. doi:10.1016/j.jpcs.2020.109816
  • M.E. Levinshtein, L.R. Sergey, and S.S. Michael, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, A willey-interscience publication, New York, 2001.
  • O. Olendskl, Comparative analysis of electric field influence on the quantum wells with different boundary conditions. Ann. Phys. 527 (2015), pp. 278–295. doi:10.1002/andp.201400228
  • I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89 (2001), pp. 5815. doi:10.1063/1.1368156

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.