239
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Phase transformation kinetics in a homogenised cast alloy 625 and its impact on deformation micromechanisms

, , &
Pages 1-27 | Received 07 Jul 2023, Accepted 21 Oct 2023, Published online: 09 Nov 2023

References

  • S. Nandi, G. Jaipal Reddy, D. Kumar, and K. Singh. Creep Rupture Behaviour of Alloy 625 Nickel-Base Superalloy Casting for Advanced Ultra Supercritical Power Plant Applications, Springer Singapore, 2020. doi:10.1007/978-981-13-8767-8_35.
  • S.J. Patel, J.J. De Barbadillo, B.A. Baker, and R.D. Gollihue, Nickel base superalloys for next generation coal fired AUSC power plants. Procedia. Eng. 55 (2013), pp. 246–252. doi:10.1016/j.proeng.2013.03.250.
  • J.M. Wheeldon and J.P. Shingledecker, Materials for Boilers Operating Under Supercritical Steam Conditions, Woodhead Publishing Limited, 2013. doi:10.1533/9780857097514.1.81.
  • A. Di Gianfrancesco, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, Cambridge, 2017. ISBN: 978-0-08-100552-1. doi:10.1016/B978-0-08-100552-1.00001-4.
  • T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power 22 (2006), pp. 361–374. doi:10.2514/1.18239.
  • ÇV Yildirim, T. Kivak, M. Sarikaya, and Ş Şirin, Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J. Mater. Res. Technol. 9 (2020), pp. 2079–2092. doi:10.1016/j.jmrt.2019.12.069.
  • H.L. Eiselstein and D.J. Tillack, The invention and definition of alloy 625. Miner. Met. Mater. Soc. (2012), pp. 1–14. doi:10.7449/1991/superalloys_1991_1_14.
  • A.K. Jena and M.C. Chaturvedi, The role of alloying elements in the design of nickel-base superalloys. J. Mater. Sci. 19 (1984), pp. 3121–3139. doi:10.1007/BF00549796.
  • J.R. Hayes, J.J. Gray, A.W. Szmodis, and C.A. Orme, Influence of chromium and molybdenum on the corrosion of nickel-based alloys. Corrosion 62 (2006), pp. 491–500. doi:10.5006/1.3279907.
  • S. Floreen, G.E. Fuchs, and W.J. Yang, The metallurgy of Alloy 625. Miner. Met. Mater. Soc. (2012), pp. 13–37. doi:10.7449/1994/superalloys_1994_13_37.
  • C.O. Yenusah, Y. Ji, Y. Liu, T.W. Stone, M.F. Horstemeyer, L.Q. Chen, and L. Chen, Three-dimensional phase-field simulation of γ″ precipitation kinetics in Inconel 625 during heat treatment. Comput. Mater. Sci. 187 (2021), pp. 110123. doi:10.1016/j.commatsci.2020.110123.
  • Y. Hu, X. Lin, Y. Li, S. Zhang, Q. Zhang, W. Chen, W. Li, and W. Huang, Influence of heat treatments on the microstructure and mechanical properties of Inconel 625 fabricated by directed energy deposition. Mater. Sci. Eng. A 817 (2021), pp. 141309. doi:10.1016/j.msea.2021.141309.
  • I.J. Moore, M.G. Burke, and E.J. Palmiere, Modelling the nucleation, growth and coarsening kinetics of γ″ (D022) precipitates in the Ni-base Alloy 625. Acta Mater. 119 (2016), pp. 157–166. doi:10.1016/j.actamat.2016.08.027.
  • I.J. Moore, M.G. Burke, N.T. Nuhfer, and E.J. Palmiere, Evaluation of classical precipitation descriptions for γ″(Ni3Nb-D022) in Ni-base superalloys. J. Mater. Sci. 52 (2017), pp. 8665–8680. doi:10.1007/s10853-017-1091-9.
  • X. Liu, J. Fan, P. Zhang, K. Cao, Z. Wang, F. Chen, D. Liu, B. Tang, H. Kou, and J. Li, Influence of heat treatment on Inconel 625 superalloy sheet: carbides, γ’’, δ phase precipitation and tensile deformation behavior. J. Alloys Compd. 930 (2023), pp. 167522). doi:10.1016/j.jallcom.2022.167522.
  • V. Shankar, K. Bhanu Sankara Rao, and S.L. Mannan, Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 288 (2001), pp. 222–232. doi:10.1016/S0022-3115(00)00723-6.
  • L.M. Suave, D. Bertheau, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, and J. Laigo, Impact of microstructural evolutions during thermal aging of alloy 625 on its monotonic mechanical properties. MATEC Web Conf. 14 (2014). doi:10.1051/matecconf/20141421001.
  • M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Some aspects of the precipitation of metastable intermetallic phases in Inconel 718. Metall. Trans. A 23 (1992), pp. 2015–2028. doi:10.1007/BF02647549.
  • Z. Wu, X. Chen, Z. Fan, Y. Zhou, and J. Dong, Studies of high-temperature fatigue behavior and mechanism for nickel-based superalloy Inconel 625. Metals (Basel) 12 (2022), pp. 1–17. doi:10.3390/met12050755.
  • M.Y. Sherif, D.A. Porter, and K.E. Easterling, Phase Transformations in Metals and Alloys, CRC press, 2021. doi:10.1201/9781003011804.
  • R.E. Reed-Hill, R. Abbaschian, and R. Abbaschian, Physical Metallurgy Principles, 4th ed., Van Nostrand, New York, 1973.
  • E. Chicago, A. Science, and L. Angeles, Coarsening behavior of the y’ precipitate. Acta Metall. 19 (1971), pp. 321–330. doi:10.1016/0001-6160(71)90099-X.
  • A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J.Y. Guédou, J.F. Uginet, and P. Héritier, Gamma double prime precipitation kinetic in Alloy 718. Mater. Sci. Eng. A 486 (2008), pp. 117–122. doi:10.1016/j.msea.2007.08.046.
  • C. Zhang, L. Yu, and H. Wang, Kinetic analysis for high-temperature coarsening of γ” phase in Ni-based superalloy GH4169. Materials (Basel) 2096 (2019), pp. 1–12. doi:10.3390/ma12132096.
  • Y.Y. Lin, F. Schleifer, M. Fleck, and U. Glatzel, On the interaction between γ′′ precipitates and dislocation microstructures in Nb containing single crystal nickel-base alloys. Mater. Charact. 165 (2020), pp. 110389. doi:10.1016/j.matchar.2020.110389.
  • J.W. Cahn, Nucleation on dislocations. Acta Metall. 5 (1957), pp. 169–172. doi:10.1016/0001-6160(57)90021-4.
  • G.M. Gómez-Ramírez and R. Pound, Nucleation of a second solid phase along dislocations. Metall. Trans. 4 (1973). doi:10.1007/BF02668009.
  • M. Sundararaman and P. Mukhopadhyay, Heterogeneous precipitation of the γ” phase in Inconel 625. Mater. Sci. Forum 3 (1985), pp. 273–280. doi:10.4028/www.scientific.net/MSF.3.273.
  • M. Sundararaman, R. Kishore, and P. Mukhopadhyay, Some aspects of the heterogeneous precipitation of the metastable y” phase in alloy 625. Superalloys (1994), pp. 405–418. doi:10.7449/1994/Superalloys_1994_405_418.
  • M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Deformation behaviour of γ″ strengthened Inconel 718. Acta Metall. 36 (1988), pp. 847–864. doi:10.1016/0001-6160(88)90139-3.
  • S.J. Hong, W.P. Chen, and T.W. Wang, A diffraction study of the γ″ phase in Inconel 718 superalloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 32 (2001), pp. 1887–1901. doi:10.1007/s11661-001-0002-4.
  • F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C.T. Liu, and J. jung Kai, Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Mater. 167 (2019), pp. 275–286. doi:10.1016/j.actamat.2019.01.048.
  • Z. Liu, M. Rakita, X. Wang, W. Xu, and Q. Han, In situ formed Al3Ti particles in Al alloy matrix and their effects on the microstructure and mechanical properties of 7075 alloy. J. Mater. Res 29 (2014), pp. 1354–1361. doi:10.1557/jmr.2014.123.
  • M. Sundararaman, P. Mukhopadhyay, and S. Banerjee, Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties. Superalloys (2012), pp. 367–378. doi:10.7449/1997/superalloys_1997_367_378.
  • X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, and H.Q. Ye, Thermal stability of primary carbides and carbonitrides in two cast Ni-base superalloys. Mater. Lett. 62 (2008), pp. 2275–2278. doi:10.1016/j.matlet.2007.11.068.
  • A. Szczotok and K. Rodak. Microstructural studies of carbides in MAR-M247 nickel-based superalloy, in: IOP Conf. Ser. Mater. Sci. Eng., 2012. https://doi.org/10.1088/1757-899x/35/1/012006.
  • X. Chen, Z. Yao, J. Dong, H. Shen, and Y. Wang, The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure. J. Alloys Compd. 735 (2018), pp. 928–937. doi:10.1016/j.jallcom.2017.11.166.
  • G. Lvov, V.I. Levit, and M.J. Kaufman, Mechanism of primary MC carbide decomposition in Ni-base superalloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35 A (2004), pp. 1669–1679. doi:10.1007/s11661-004-0076-x.
  • G. Liu, X. Xiao, M. Véron, and S. Birosca, The nucleation and growth of η phase in nickel-based superalloy during long-term thermal exposure. Acta Mater. 185 (2020), pp. 493–506. doi:10.1016/j.actamat.2019.12.038.
  • L.M. Suave, J. Cormier, P. Villechaise, A. Soula, Z. Hervier, D. Bertheau, and J. Laigo, Microstructural evolutions during thermal aging of alloy 625: impact of temperature and forming process. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014), pp. 2963–2982. doi:10.1007/s11661-014-2256-7.
  • M. Kumar and V.K. Vasudevan, Mechanical properties and strengthening of a Ni–25Mo–8Cr alloy containing Ni2(Mo,Cr) precipitates. Acta Mater. 44 (1996), pp. 4865–4880. doi:10.1016/S1359-6454(96)00092-4.
  • A.K. Godasu, S. Mishra, U. Prakash, and S. Mula, Tensile deformation modeling of a homogenized cast alloy 625: effects of large grain size. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 53 (2022), pp. 2239–2258. doi:10.1007/s11661-022-06666-6.
  • Y. Brechet, F. Louchet, C. Marchionni, and J.L. Verger-Gaugry, Experimental (TEM and STEM) investigation and theoretical approach to the fatigue-induced dissolution of δ′ precipitates in a 2.5 wt% Al-Li alloy. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 56 (1987), pp. 353–366. doi:10.1080/01418618708214391.
  • D. Fournier, A. Pineau, D. Fournier, and T. Company, Low cycle fatigue behavior of Inconel 718 at 298 K and 823 K. Metall. Mater. Trans. A (1977). doi:10.1007/bf02667395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.