563
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Ti-Al-based alloys with Mo: high-temperature phase equilibria and microstructures in the ternary system

& ORCID Icon
Pages 28-54 | Received 18 Aug 2023, Accepted 30 Oct 2023, Published online: 09 Nov 2023

References

  • H.D. Kessler and M. Hansen, Transformation kinetics and mechanical properties of titanium-aluminum-molybdenum alloys. Trans. Amer. Soc. Met. 46 (1954), pp. 587–608.
  • F.A. Crossley, W.F. Carew and D.W. Levinson. Development of Titanium-Base Alloys for Elevated Temperature Application, WADC-TR 54-278, Armour Research Foundation of Illinois Inst. of Tech., Chicago, Wright-Patterson Air Force Base, Ohio, Pt. 1&2 (1954), Pt. 3 (1956), Pt. 4 (1957).
  • W. Knorr, Properties and heat treatment of the titanium alloy TiAl7Mo4 (in German). Techn. Mitt. Krupp 17 (1959), pp. 111–123.
  • M. Kimura, K. Hashimoto and H. Morikawa, Study on phase stability in Ti-Al-X systems at high temperatures. Mater. Sci. Eng. A 152 (1992), pp. 54–59.
  • S. Mayer, P. Erdely, F.D. Fischer, D. Holec, M. Kastenhuber, T. Klein and H. Clemens, Intermetallic β-solidifying γ-TiAl based alloys − from fundamental research to application. Adv. Eng. Mater 19 (2017), pp. 1600735.
  • N. Abdoshahi, M. Dehghani, L. Hatzenbichler, P. Spoerk-Erdely, A.V. Ruban, M. Musi, S. Mayer, J. Spitaler and D. Holec, Structural stability and mechanical properties of TiAl + Mo alloys: a comprehensive ab initio study. Acta Mater. 221 (2021), pp. 117427.
  • S. Djanarthany, J. Viala and J. Bouix, An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys 72 (2001), pp. 301–319.
  • H. Clemens and S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater 15 (2013), pp. 191–215.
  • B.P. Bewlay, M. Weimer, T. Kelly, A. Suzuki and P.R. Subramanian, The science, technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc 1516 (2013), pp. 49–58.
  • V.N. Eremenko, L.A. Tretyachenko, S.A. Sukhaya, and V.M. Petukh, Investigation of the Structure of Alloys of the Ti-Mo-Al System (in Russian), Physico-Chemical Investigation of Binary and Ternary Systems of Transition Metals of IV-VIII Groups of the Periodic System and Development of Principles for Control of Mechanical Properties of Alloys on Their Base, Final Report, Theme 2.26.30, State Regist. No. 01 86 0 060682, Akad. Nauk Ukr. SSR, Frantsevich Institute for Problems of Materials Science, Kyiv, Ukraine (1990), pp. 83–135, 141–143.
  • M. Kimura and K. Hashimoto, High-temperature phase equilibria in Ti-Al-Mo system. J. Phase Equilib 20 (1999), pp. 224–230.
  • X.M. Huang, L.L. Zhu, G.M. Cai, H.S. Liu and Z.P. Jin, Experimental investigation of phase equilibria in the Ti–Al–Mo ternary system. J. Mater. Sci. 52 (2017), pp. 2270–2284.
  • V. Witusiewicz, A. Bondar, U. Hecht, O. Stryzhyboroda, N. Tsyganenko, V. Voblikov, V. Petyukh and T.Y. Velikanova, Thermodynamic re-modelling of the ternary Al-Mo-Ti system based on novel experimental data. J. Alloys Compd 749 (2018), pp. 1071–1091.
  • B. Distl, A. Walnsch, R.F.L. Mellor, L. Gomell, M. Noori, A. Gedsun, and F. Stein, Al-Mo-Ti ternary phase diagram evaluation, MSI Eureka, Ternary Evaluations, Watson, A. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart Doc-ID: 10.17143.3.2 (2021).
  • T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, OH, USA, 1990.
  • R. Nino, J. Fujinaka, H. Shimamura, S. Miura and T. Mohri, Phase equilibria and microstructure evolution of Al-Mo-Ti ternary alloys. Intermetallics 11 (2003), pp. 611–623.
  • D.M. Cupid, O. Fabrichnaya, F. Ebrahimi and H.J. Seifert, Thermodynamic assessment of the Al–Mo system and of the Ti–Al–Mo system from 0 to 20at.% Ti. Intermetallics 18 (2010), pp. 1185–1196.
  • H. Böhm and K. Löhberg, A superlattice of the CsCl-type in the system Ti-Mo-Al (in German). Z. Metallkd 49 (1958), pp. 173–178.
  • D. Holec, D. Legut, L. Isaeva, P. Souvatzis, H. Clemens and S. Mayer, Interplay between effect of Mo and chemical disorder on the stability of β/βo-TiAl phase. Intermetallics 61 (2015), pp. 85–90.
  • N. Abdoshahi, P. Spoerk-Erdely, M. Friák, S. Mayer, M. Šob and D. Holec, Ab initio study of chemical disorder as an effective stabilizing mechanism of bcc-based TiAl + Mo. Phys. Rev. Mater 4 (2020), pp. 103604.
  • M. Dehghani, A.V. Ruban, N. Abdoshahi, D. Holec and J. Spitaler, Stability and ordering of bcc and hcp TiAl + Mo phases: an ab initio study. Comput. Mater. Sci. 205 (2022), pp. 111163.
  • P. Alonso and G. Rubiolo, Relative stability of bcc structures in ternary alloys with Ti50Al25Mo25 composition. Phys. Rev. B 62 (2000), pp. 237–242.
  • K. Das and S. Das, Order-disorder transformation of the body centered cubic phase in the Ti-Al-X (X = Ta, Nb, or Mo) system. J. Mater. Sci. 38 (2003), pp. 3995–4002.
  • R. Hansen and A. Raman, Alloy chemistry of σ (β-U)-related phases. III. σ-Phases with non-transition elements. Z. Metallkd 61 (1970), pp. 115–120.
  • J. Braun and M. Ellner, On the partial atomic volume of aluminium in the titanium-rich phases of the binary system Ti-Al. Z. Metallkd 91 (2000), pp. 389–392.
  • J. Braun, M. Ellner and B. Predel, Experimental investigations of the structure and stability of the TiAl phases (in German). Z. Metallkd 86 (1995), pp. 870–876.
  • J. Braun and M. Ellner, X-ray high-temperature in situ investigation of the aluminide TiAl2 (HfGa2 type). J. Alloys Compd. 309 (2000), pp. 118–122.
  • J. Braun and M. Ellner, Phase equilibria investigations on the aluminium-rich part of the binary system Ti-Al. Metal. Mater. Trans. A 32 (2001), pp. 1037–1047.
  • R. Kainuma, M. Palm and G. Inden, Solid-phase equilibria in the Ti-rich part of the Ti–Al system. Intermetallics 2 (1994), pp. 321–332.
  • B. Distl, K. Hauschildt, F. Pyczak and F. Stein, Phase equilibria in the Ti-rich part of the Ti–Al–Nb system Part II. High-temperature phase equilibria between 1000 and 1300 °C. J. Phase Equilib. Diffus 43 (2022), pp. 554–575.
  • X. Llovet, A. Moy, P.T. Pinard and J.H. Fournelle, Electron probe microanalysis: a review of recent developments and applications in materials science and engineering. Prog. Mater. Sci 116 (2021), pp. 100673.
  • N. Schell, A. King, F. Beckmann, T. Fischer, M. Müller and A. Schreyer, The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 772 (2013), pp. 57–61.
  • B. Distl, K. Hauschildt, B. Rashkova, F. Pyczak and F. Stein, Phase equilibria in the Ti-rich part of the Ti–Al–Nb system Part I. Low-temperature phase equilibria between 700 and 900 °C. J. Phase Equilib. Diffus 43 (2022), pp. 355–381.
  • J.C. Schuster and M. Palm, Reassessment of the binary aluminium-titanium phase diagramm. J. Phase Equilib. Diffus 27 (2006), pp. 255–277.
  • M. Palm, Al-Ti binary phase diagram evaluation, MSI Eureka, Binary Evaluations, Effenberg, G. (Ed.), MSI, Materials Science International Services GmbH, Stuttgart Doc-ID: 20.15634.2.4 (2020).
  • J. Murray, The Mo-Ti (Molybdenum-Titanium) System, in Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, OH, USA, 1987. pp. 169–175.
  • R. Kainuma, Y. Fujita, H. Mitsui and K. Ishida, Phase Equilibria among α (hcp), β (bcc) and γ (L10) phases in Ti–Al base ternary alloys. Intermetallics 8 (2000), pp. 855–867.
  • Y.G. Li and M.H. Loretto, Microstructure and fracture behaviour of Ti-44Al-xM derivatives. Acta Metall. Mater 42 (1994), pp. 2913–2919.
  • S. Das, J.C. Mishurda, W.P. Allen, J.H. Perepezko and L.S. Chumbley, Development of a (γ+βo) lamellar microstructure in a Ti45Al50Mo5 alloy. Scr. Metal. Mater 28 (1993), pp. 489–494.
  • A.K. Singh and D. Banerjee, Transformations in α2+γ titanium aluminide alloys containing molybdenum: Part II. Heat treatment. Metall. Mater. Trans. A 28 (1997), pp. 1745–1753.
  • S. Azad, R.K. Mandal and A.K. Singh, Effect of Mo addition on transformation behavior of (α2+γ) based Ti–Al alloys. Mater. Sci. Eng. A 429 (2006), pp. 219–224.
  • T. Schmoelzer, S. Mayer, C. Sailer, F. Haupt, V. Güther, P. Staron, K.-D. Liss and H. Clemens, In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44 at% Al-(3-7) at% Mo alloys. Adv. Eng. Mater. 13 (2011), pp. 306–311.
  • M. Musi, H. Clemens, A. Stark, P. Staron and P. Spoerk-Erdely, Phase transformations and phase stability in the Ti–44 at.%Al–(0–7 at.%)Mo system. Intermetallics 143 (2022), pp. 107484.