190
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

An EBSD analysis of a commercial immiscible Cu43%Cr alloy after high-pressure torsion processing and annealing

, , , , , & show all
Pages 88-114 | Received 01 Jun 2023, Accepted 05 Nov 2023, Published online: 16 Nov 2023

References

  • L.-M. Peng, X.-M. Mao, K.-D. Xu, and W.-J. Ding, Property and thermal stability of in situ composite Cu–Cr alloy contact cable. J. Mater. Process. Technol. 166(no 2) (2005), pp. 193–198.
  • X. Sun, J. Jie, T. Wang, and T. Li, Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu–Cr–Ni–Si alloy for lead frames applications. Mater. Sci. Eng. A 809, pp. 140521.
  • H. Kojima, N. Hayakawa, R. Nishimura, H. Okubo, H. Sato, and Y. Noda, Conditioning mechanism of Cu-Cr electrode based on electrode surface state under impulse voltage application in vacuum. IEEE Trans. Dielectr. Electr. Insul. 18(no 6) (Déc 2011), pp. 2108–2114.
  • P. Kiryukhantsev-Korneev, A. Sytchenko, D. Moskovskikh, K.Kuskov, L. Volkova, M. Poliakov, Y. Pogozhev, S. Yudin, E. Yakushko, and A. Nepapushev, Hard wear-resistant Ti-Si-C coatings for Cu-Cr electrical contacts. Materials. (Basel) 16(no 3) (2023), pp. 936.
  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(no 2) (2000), pp. 103–189.
  • E.H. Ekiz, T.G. Lach, R.S. Averback, N.A. Mara, I.J. Beyerlein, M. Pouryazdan, H. Hahn, and P. Bellon, Microstructural evolution of nanolayered Cu–Nb composites subjected to high-pressure torsion. Acta Mater. 72 (2014), pp. 178–191.
  • J. Guo, G. Haberfehlner, J. Rosalie, L. Li, M. J. Duarte, G. Kothleitner, G. Dehm, Y. He, R. Pippan, and Z. Zhang, In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys. Nat. Commun. 9(no 1) (2018), pp. 946.
  • T. Mousavi, J. Dai, P. Bazarnik, P. H. R. Pereira, Y. Huang, M. Lewandowska, and T. G. Langdon, Fabrication and characterization of nanostructured immiscible Cu–Ta alloys processed by high-pressure torsion. J. Alloys Compd. 832 (2020), pp. 155007.
  • D. Luo, T. Huminiuc, Y. Huang, T. Polcar, and T.G. Langdon, The fabrication of high strength Zr/Nb nanocomposites using high-pressure torsion. Mater. Sci. Eng. A 790 (2020), pp. 139693.
  • J. Guo, J.M. Rosalie, R. Pippan, and Z. Zhang, Revealing the Microstructural evolution in Cu-Cr nanocrystalline alloys during high pressure torsion. Mater. Sci. Eng. A 695 (2017), pp. 350–359.
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51(no 7) (2006), pp. 881–981.
  • S.M. Ghalehbandi, M. Malaki, and M. Gupta, Accumulative roll bonding—A review. Applied Sciences 9(no 17) (2019), pp. 3627.
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53(no 6) (2008), pp. 893–979.
  • H. Azzeddine, D. Bradai, T. Baudin, and T.G. Langdon, Texture evolution in high-pressure torsion processing. Prog. Mater. Sci. 125 (2022), pp. 100886.
  • J. Guo, J. Rosalie, R. Pippan, and Z. Zhang, On the phase evolution and dissolution process in Cu-Cr alloys deformed by high pressure torsion. Scr. Mater. 133 (2017), pp. 41–44.
  • J. Guo, Q. Shao, O. Renk, L. Li, Y. He, Z. Zhang, and R. Pippan, Combined Fe and O effects on microstructural evolution and strengthening in Cu–Fe nanocrystalline alloys. Mater. Sci. Eng. A 772 (2020), pp. 138800.
  • Q. Shao, J. Guo, J. Chen, and Z. Zhang, Atomic-scale investigation on the structural evolution and deformation behaviors of Cu–Cr nanocrystalline alloys processed by high-pressure torsion. J. Alloys Compd. 832 (2020), pp. 154994.
  • X. Sauvage, P. Jessner, F. Vurpillot, and R. Pippan, Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation. Scr. Mater. 58(no 12) (2008), pp. 1125–1128.
  • A. Bachmaier, G.B. Rathmayr, M. Bartosik, D. Apel, Z. Zhang, and R. Pippan, New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater. 69 (2014), pp. 301–313.
  • Z. Zhang, J. Guo, G. Dehm, and R. Pippan, In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys. Acta Mater. 138 (2017), pp. 42–51.
  • M. J. Zehetbauer and Y. T. Zhu, eds. Bulk Nanostructured Materials, 1st ed. Wiley, 2009.
  • P. Jenei, J. Gubicza, E.Y. Yoon, H.S. Kim, and J.L. Lábár, High temperature thermal stability of pure copper and copper–carbon nanotube composites consolidated by high pressure torsion. Compos. A: Appl. Sci. Manuf. 51 (2013), pp. 71–79.
  • Z. Hegedűs, J. Gubicza, M. Kawasaki, N.Q. Chinh, J.L. Lábár, and T.G. Langdon, Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. J. Mater. Sci. 48(no 13) (2013), pp. 4637–4645.
  • G. Wilde and H. Rösner, Stability aspects of bulk nanostructured metals and composites. J. Mater. Sci. 42(no 5) (2007), pp. 1772–1781.
  • C.C. Koch, R.O. Scattergood, M. Saber, and H. Kotan, High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28(no 13) (2013), pp. 1785–1791.
  • R.A. Andrievski, Review of thermal stability of nanomaterials. J. Mater. Sci. 49(no 4) (févr. 2014), pp. 1449–1460.
  • L. Lutterotti, S. Matthies, H.-R. Wenk, A.S. Schultz, and J.W. Richardson, Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81(no 2) (1997), pp. 594–600.
  • G.K. Williamson and R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(no 1) (1956), pp. 34–46.
  • F.J. Humphreys, Review Grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36(no 16) (2001), pp. 3833–3854.
  • A.Y. Khereddine, F. Hadj Larbi, H. Azzeddine, T. Baudin, F. Brisset, A.-L. Helbert, M.-H. Mathon, M. Kawasaki, D. Bradai, and T. G. Langdon, Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion. J. Alloys Compd. 574 (2013), pp. 361–367.
  • K. Abib, J.A.M. Balanos, B. Alili, and D. Bradai, On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP. Mater. Charact. 112 (févr. 2016), pp. 252–258.
  • K. Tirsatine, H. Azzeddine, T. Baudin, A.-L. Helbert, F. Brisset, B. Alili, and D. Bradai, Texture and microstructure evolution of Fe–Ni alloy after accumulative roll bonding. J. Alloys Compd. 610 (2014), pp. 352–360.
  • G.R. Canova, U.F. Kocks, and J.J. Jonas, Theory of torsion texture development. Acta Metall. 32(no 2) (févr. 1984), pp. 211–226.
  • F. Montheillet, P. Gilormini, and J.J. Jonas, Relation between axial stresses and texture development during torsion testing: A simplified theory. Acta Metall. 33(no 4) (1985), pp. 705–717.
  • Y. Zhao, R. Massion, T. Grosdidier, and L.S. Toth, Gradient structure in high pressure torsion compacted iron powder. Adv. Eng. Mater. 17(no 12) (déc. 2015), pp. 1748–1753.
  • J. Duan, H. Wen, C. Zhou, R. Islamgaliev, and X. Li, Evolution of microstructure and texture during annealing in a high-pressure torsion processed Fe-9Cr alloy. Materialia 6 (2019), pp. 100349.
  • T. Ungár, Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 51(no 8) (2004), pp. 777–781.
  • K.S. Kormout, R. Pippan, and A. Bachmaier, Deformation-induced supersaturation in immiscible material systems during high-pressure torsion . Adv. Eng. Mater. 19(no 4) (2017), pp. 1600675.
  • A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, and T.G. Langdon, Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Mater. Sci. Eng. A 641 (2015), pp. 21–28.
  • S. Lee and Z. Horita, High-Pressure torsion for pure chromium and niobium. Mater. Trans. 53(no 1) (2012), pp. 38–45.
  • K. Edalati and Z. Horita, Parameters influencing steady-state grain size of pure metals processed by high-pressure torsion. MSF 706–709, pp. 3034–3039.
  • A.A. Gazder, W. Cao, C.H.J. Davies, and E.V. Pereloma, An EBSD investigation of interstitial-free steel subjected to equal channel angular extrusion. Mater. Sci. Eng. A 497(no 1–2) (déc. 2008), pp. 341–352.
  • M. Rifai and H. Miyamoto, Effect of strain energy on the grain growth behaviour of ultrafine-grained iron-chromium alloy by equal channel angular pressing. Journal of Mechanical Engineering and Sciences 14(no 3) (2020), pp. 7049–7057.
  • K.S. Suresh, S. Sinha, A. Chaudhary, and S. Suwas, Development of microstructure and texture in Copper during warm accumulative roll bonding. Mater. Charact. 70 (2012), pp. 74–82.
  • M. Kawasaki, Z. Horita, and T.G. Langdon, Microstructural evolution in high purity aluminum processed by ECAP. Mater. Sci. Eng. A 524(no 1–2) (2009), pp. 143–150.
  • C. Xu, Z. Horita, and T.G. Langdon, Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater. Sci. Eng. A 528(no 18) (2011), pp. 6059–6065.
  • R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A 396(no 1–2) (2005), pp. 341–351.
  • K. Tirsatine, Y. Huang, T. Baudin, A.-L. Helbert, F. Brisset, D. Bradai, and T. G. Langdon, An EBSD analysis of Fe-36%Ni alloy processed by HPT at ambient and a warm temperature. J. Alloys Compd. 753 (2018), pp. 46–53.
  • A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, and T.G. Langdon, Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion and rapid annealing. MSF 667–669 (déc 2010), pp. 223–228. scientific.net/MSF.667-669.223
  • A. Garbacz and M.W. Grabski, Modelling of CSL boundaries distribution in polycrystals. Scr. Metall. 23(no 8) (1989), pp. 1369–1374.
  • D.H. Warrington and M. Boon, Ordered structures in random grain boundaries; some geometrical probabilities. Acta Metall. 23(no 5) (1975), pp. 599–607.
  • S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, and S.L. Semiatin, Production of submicrocrystalline structure in large-scale Ti–6Al–4V billet by warm severe deformation processing. Scr. Mater. 51(no 12) (déc. 2004), pp. 1147–1151.
  • A. Panigrahi, B. Sulkowski, T. Waitz, K. Ozaltin, W. Chrominski, A. Pukenas, J. Horky, M. Lewandowska, W. Skrotzki, and M. Zehetbauer, Mechanical properties, structural and texture evolution of biocompatible Ti–45Nb alloy processed by severe plastic deformation. J. Mech. Behav. Biomed. Mater. 62 (2016), pp. 93–105.
  • N.A. Enikeev, E. Schafler, M. Zehetbauer, I.V. Alexandrov, and R. Valiev, Observations of texture in large scale HPT-processed Cu. MSF 584–586 (juin 2008), pp. 367–374. www.scientific.net/MSF.584-586.367.
  • K.J. Al-Fadhalah, S.N. Alhajeri, A.I. Almazrouee, and T.G. Langdon, Microstructure and microtexture in pure copper processed by high-pressure torsion. J. Mater. Sci. 48(no 13) (2013), pp. 4563–4572.
  • A. Korneva, B. Straumal, A. Kilmametov, R. Chulist, P. Straumal, and P. Zięba, Phase transformations in a Cu Cr alloy induced by high pressure torsion. Mater. Charact. 114 (2016), pp. 151–156.
  • B.K. Kim, J.A. Szpunar, and A.P. Zhilyaev, Annealing texture in thermal stability of ultrafine-grained Ni. MSF 408–412 (août 2002), pp. 943–948. www.scientific.net/MSF.408-412.943.
  • H.W. Zhang, X. Huang, R. Pippan, and N. Hansen, Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion. Acta Mater. 58(no 5) (2010), pp. 1698–1707.
  • Y. Wang and J. Aktaa, Microstructural evolution, textural evolution and thermal stabilities of W and W – 1 wt% La2O3 subjected to high-pressure torsion. Materialia 2 (2018), pp. 46–52.
  • R. Chulist, A. Böhm, E. Rybacki, T. Lippmann, C.G. Oertel, and W. Skrotzki, Texture evolution of HPT-processed Ni50Mn29Ga21. MSF vol. 702–703 (2011), pp. 169–172. scientific.net/MSF.702-703.169
  • O. Renk, P. Ghosh, and R. Pippan, Generation of extreme grain aspect ratios in severely deformed tantalum at elevated temperatures. Scr. Mater. 137 (2017), pp. 60–63.
  • B. Klöden, C.-G. Oertel, W. Skrotzki, and E. Rybacki, Microstructure development during high strain torsion of NiAl. J. Eng. Mater. Technol. 131(no 1) (2009), pp. 011101.
  • R. Chulist, W. Skrotzki, C.-G. Oertel, A. Böhm, H.-G. Brokmeier, and T. Lippmann, Cyclic fibre texture in hot extruded Ni 50 Mn 29 Ga 21. Int. J. Mater. Res. 103(no 5) (2012), pp. 575–579.
  • A.Y. Khereddine, F.H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, and T.G. Langdon, An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science and Engineering: A 576 (2013), pp. 149–155.
  • K. Abib, F.H. Larbi, L. Rabahi, B. Alili, and D. Bradai, DSC analysis of commercial Cu–Cr–Zr alloy processed by equal channel angular pressing. Transactions of Nonferrous Metals Society of China 25(no 3) (2015), pp. 838–843.
  • Y. Chen, J. Hjelen, and H.J. Roven, Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis. Transactions of Nonferrous Metals Society of China 22(no 8) (2012), pp. 1801–1809.
  • E. J. Mittemeijer and P. Scardi, eds. Diffraction analysis of the microstructure of materials, vol. 68. In Springer Series in Materials Science, vol. 68. Berlin: Springer Berlin Heidelberg, 2004. pp. 59–62.
  • N.A. Akhmadeev, N.P. Kobelev, R.R. Mulyukov, Y.M. Soifer, and R.Z. Valiev, The effect of heat treatment on the elastic and dissipative properties of copper with the submicrocrystalline structure. Acta Metallurgica et Materialia 41(no 4) (1993), pp. 1041–1046.
  • F.J. Humphreys and M. Hatherly, Recrystallization and Related Phenomena, Pergamon, Oxford, 1995.
  • J.A. Muñoz, O. F. Higuera, J. A. Benito, D. Bradai, T. Khelfa, R. E. Bolmaro, A. M. Jorge, and J. M. Cabrera, Analysis of the micro and substructural evolution during severe plastic deformation of ARMCO iron and consequences in mechanical properties. Materials Science and Engineering: A 740-741 (2019), pp. 108–120.
  • Z. Horita and T.G. Langdon, Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Materials Science and Engineering: A 410-411 (2005), pp. 422–425.
  • A.P. Zhilyaev, A.A. Gimazov, G.I. Raab, and T.G. Langdon, Using high-pressure torsion for the cold-consolidation of copper chips produced by machining. Materials Science and Engineering: A 486(no 1–2) (2008), pp. 123–126.
  • J. Wongsa-Ngam, M. Kawasaki, Y. Zhao, and T.G. Langdon, Microstructural evolution and mechanical properties of a Cu–Zr alloy processed by high-pressure torsion. Materials Science and Engineering: A 528(no 25–26) (2011), pp. 7715–7722.
  • J. Wongsa-Ngam, M. Kawasaki, and T.G. Langdon, Achieving homogeneity in a Cu–Zr alloy processed by high-pressure torsion. Journal of Materials Science 47(no 22) (2012), pp. 7782–7788.
  • H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe, Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Materials Science and Engineering: A 290(no 1–2) (2000), pp. 128–138.
  • H. Matsunaga, Z. Horita, K. Imamura, T. Kiss, and X. Sauvage, Aging behavior of Cu-Ni-Si alloy processed by high-pressure torsion. Materials Science Forum 667-669 (2010), pp. 307–312..scientific.net/MSF.667-669.307.
  • Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Strain hardening behavior of a two-phase Cu–Ag alloy processed by high-pressure torsion. Scripta Materialia 65(no 6) (2011), pp. 477–480.
  • N.J. Petch, The ductile-brittle transition in the fracture of α-iron: I. Philosophical Magazine 3(no 34) (1958), pp. 1089–1097.
  • G.I. Taylor, The mechanism of plastic deformation of crystals. Part I.—Theoretical », Proc. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. vol. 145, no 855, p. 362–387, 1934.
  • J. Cizek, Ultra fine grained copper prepared by high pressure torsion: Spatial distribution of defects from positron annihilation spectroscopy, in In Nanomaterials by Severe Plastic Deformation, M. Zehetbauer and R.Z. Valiev, eds., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2004. pp. 407–412.
  • K.A. Darling, A.J. Roberts, Y. Mishin, S.N. Mathaudhu, and L.J. Kecskes, Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum. Journal of Alloys and Compounds 573 (2013), pp. 142–150.
  • S. Özerinç, K. Tai, N.Q. Vo, P. Bellon, R.S. Averback, and W.P. King, Grain boundary doping strengthens nanocrystalline copper alloys. Scripta Materialia 67(no 7–8) (2012), pp. 720–723.
  • K.A. Darling, L.J. Kecskes, M. Atwater, J. Semones, R.O. Scattergood, and C.C. Koch, Thermal stability of nanocrystalline nickel with yttrium additions. Journal of Materials Research 28(no 13) (2013), pp. 1813–1819.
  • I. Sabirov and R. Pippan, Characterization of tungsten fragmentation in a W–25%Cu composite after high-pressure torsion. Materials Characterization 58(no 10) (2007), pp. 848–853.
  • S. Romankov, Y.C. Park, I.V. Shchetinin, and J.M. Yoon, Atomic-scale intermixing, amorphization and microstructural development in a multicomponent system subjected to surface severe plastic deformation. Acta Materialia 61(no 4) (2013), pp. 1254–1265.
  • N. Ibrahim, M. Peterlechner, F. Emeis, M. Wegner, S.V. Divinski, and G. Wilde, Mechanical alloying via high-pressure torsion of the immiscible Cu50Ta50 system. Materials Science and Engineering: A 685 (2017), pp. 19–30.
  • T. Niu, Y. Zhang, Z. He, T. Sun, N. A. Richter, H. Wang, and X. ZhangTexture development in Cu-Ag-Fe triphase immiscible nanocomposites with superior thermal stability. Acta Materialia 244 (2023), pp. 118545.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.