128
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electronic, magnetic, half-Metallic, pressure-induced elastic and curie temperature predictions of Zr2RhTl Heusler alloy: DFT and EFT studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 115-135 | Received 18 May 2023, Accepted 06 Oct 2023, Published online: 21 Nov 2023

References

  • F. Heusler, Uber magnetische manganlegie rungen. Verh. Dtsch. Phys. Ges. 5 (1903), p. 219.
  • F. Heusler, W. Starck, and E. Haupt, Verh. Dtsch. Phys. Ges. 5 (1903), p. 220.
  • H. Ding, X. Li, Y. Feng, and B. Wu, Electronic structure, magnetism and disorder effect in double half-Heusler alloy Mn2FeCoSi2. J. Magn. Mag. Mat. 555 (2022), p. 169367. doi:10.1016/j.jmmm.2022.169367.
  • L. Wang, Y. Cao, C. Zhang, Y. Xu, and S. Zhou, Theoretical study of structural, mechanical, electronic, magnetic and thermodynamic properties of Cu2MnAl-type Fe2YAl (Y = Cr, Mo and W) full-Heusler alloys. Mat. Sci. Eng. B 278 (2022), p. 115639. doi:10.1016/j.mseb.2022.115639.
  • E.G. Özdemir and Z. Merdan, The effect of structural changes on the half metallic properties by using Tran Blaha modified Becke Johnson (TB_mBJ) method. J. Magn. Mag. Mat. 514 (2020), p. 167198. doi:10.1016/j.jmmm.2020.167198.
  • D. Vishali and R. John, Structural, electronic and magnetic properties of the Half-Heusler alloy CrZSi (Z = Sc, Ti). J. Crys. Growth 583 (2022), p. 126556. doi:10.1016/j.jcrysgro.2022.126556.
  • F. Zhang, K. Westra, Q. Shen, I. Batashev, A. Kiecana, N. van Dijk, and E. Brück, The second-order magnetic phase transition and magnetocaloric effect in all-d-metal NiCoMnTi-based Heusler alloys. J. Al. Comp. 906 (2022), p. 164337. doi:10.1016/j.jallcom.2022.164337.
  • S. Mitra, A. Ahmad, S. Chakrabarti, S. Biswas, and A.K. Das, Investigation on structural, electronic and magnetic properties of Co2FeGe Heusler alloy. Experiment and theory. J. Magn. Mag. Mat. 552 (2022), p. 169148. doi:10.1016/j.jmmm.2022.169148.
  • A. El-Gazaly, J. Gorchon, R.B. Wilson, A. Pattabi, and J. Bokor, Progress towards ultrafast spintronics applications. J. Magn. Mag. Mat. 502 (2020), p. 166478. doi:10.1016/j.jmmm.2020.166478.
  • A. Hirohata, K. Yamada, Y. Nakatani, I.L. Prejbeanu, B. Dieny, P. Pirro, and B. Hillebrands, Review on spintronics: Principles and device applications. J. Magn. Mag. Mat. 509 (2020), p. 166711. doi:10.1016/j.jmmm.2020.166711.
  • G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip, and B. van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62 (2000), p. 4790–4793. doi:10.1103/PhysRevB.62.R4790.
  • H. Tang, F. Monzon, R. Lifshitz, M. Cross, and M. Roukes, Ballistic spin transport in a two-dimensional electron gas. Phys. Rev. B 61 (2000), p. 4437–4440. doi:10.1103/PhysRevB.61.4437.
  • E.G. Özdemir, Comparisons of the magnetic and half-metallic properties of Sb-V-Te compounds in low and rich vanadium region. J. Supercond. Nov. Magn. 35 (2022), p. 3745–3759. doi:10.1007/s10948-022-06441-z.
  • R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, New class of materials: Half-metallic ferromagnets. Phy. Rev. Lett. 50 (1983), pp. 2024–2027. doi:10.1103/PhysRevLett.50.2024.
  • N.A. Zarkevich, P. Singh, A.V. Smirnov, and D.D. Johnson, Effect of substitutional doping and disorder on the phase stability, magnetism, and half-metallicity of Heusler alloys. Acta Mat. 225 (2022), p. 117477. doi:10.1016/j.actamat.2021.117477.
  • A.R. Jafari, S. Davatolhagh, and A. Dehghan, Half-metallic p0-d half-Heusler alloys with stable structure in ferromagnetic state. J. Phys. Chem. Solids 166 (2022), p. 110702. doi:10.1016/j.jpcs.2022.110702.
  • E.G. Özdemir, S. Doğruer, A. Özcan, and Z. Merdan, The effect of structural changes on half-metallic, elastic and magnetic properties of the FeWGa half-Heusler compound via first-principles studies. J. Magn. Mag. Mat. 546 (2022), p. 168872. doi:10.1016/j.jmmm.2021.168872.
  • M.J. Alrahamneh, J.M. Khalifeh, and A.A. Mousa, Ab-initio calculations of the structural, mechanical, electronic, magnetic and thermoelectric properties of Zr2RhX (X  =  Ga, In) Heusler alloys, Physica. B 581 (2020), p. 411941. doi:10.1016/j.physb.2019.411941.
  • X. Wang, W. Zhao, Z. Cheng, X. Dai, and R. Khenata, Electronic, magnetic, half-metallic and mechanical properties of a new quaternary Heusler compound ZrRhTiTl: Insights from first-principles studies. Sol. Sta. Com. 269 (2018), pp. 125–130. doi:10.1016/j.ssc.2017.10.021.
  • G. Ding, C. Xie, J. Bai, Z. Cheng, X. Wang, and W. Wu, Recipe for single-pair-Weyl-points phonons carrying the same chiral charges. Phy. Rev. B 108 (2023), p. L020302. doi:10.1103/PhysRevB.108.L020302.
  • Y. Yang, J. Wang, Y. Liu, Y. Cui, G. Ding, and X. Wang, Topological phonons in Cs-Te binary systems. Phy. Rev. B 107 (2023), p. 024304. doi:10.1103/PhysRevB.107.024304.
  • T. Kaneyoshi, Differential operator technique in the Ising spin systems. Acta. Phys. Pol. A 83 (1993), pp. 703–737. doi:10.12693/APhysPolA.83.703.
  • T. Kaneyoshi, Magnetizations of a nanoparticle described by the transverse Ising model. J. Magn. Magn. Mat. 321 (2009), pp. 3430–3435. doi:10.1016/j.jmmm.2009.06.064.
  • T. Kaneyoshi, Magnetizations of a transverse Ising nanowire. J. Mag. Magn. Mat. 322 (2010), pp. 3410–3415. doi:10.1016/j.jmmm.2010.06.037.
  • B. Saatçi, N. Şarlı, E.G. Özdemir, and Z. Merdan, Bridge constant and atom between theoretical and experimental magnetism in Ni2MnSb Heusler alloy: DFT and EFT studies. Phil. Mag. 101 (2021), pp. 501–516. doi:10.1080/14786435.2020.1844330.
  • N. Şarlı, F. Ak, E.G. Özdemir, B. Saatçi, and Z. Merdan, Key role of central antimony in magnetization of Ni0.5Co1.5MnSb quaternary Heusler alloy revealed by comparison between theory and experiment. Physica. B 560 (2019), pp. 46–50. doi:10.1016/j.physb.2019.02.031.
  • A. Duran, Surface Superconductivity in Ni50Mn36Sn14 Heusler alloy. J. Supercond. Nov. Magn. 31 (2018), pp. 4053–4062. doi:10.1007/s10948-018-4686-8.
  • A. Duran, Magnetic properties of Mn2RhSi Heusler alloy: Phase transition and hysteresis behavior at a very low temperature. J. Low Temp. Phys. 203 (2021), pp. 127–142. doi:10.1007/s10909-021-02579-7.
  • N.K. Yağcı, Perpendicular magnetic anisotropy revealed by c/a ratio of Mn2NiB Heusler alloy. J. Supercond. Nov. Magn. 34 (2021), pp. 959–962. doi:10.1007/s10948-020-05785-8.
  • M. Keskin and N. Şarlı, JEPT 127 (2018), pp. 516–524. RZETF. 154 (2018) 603–612.
  • N. Şarlı and M. Keskin, Effects of the copper and oxygen atoms of the CuO-plane on magnetic properties of the YBCO by using the effective-field theory. Chin. J. Phys. 59 (2019), pp. 256–264. doi:10.1016/j.cjph.2019.03.007.
  • N. Şarlı and M. Keskin, Effect of the distance range between the YBa-core and CuO-shell on the superconducting properties in the YBCO by an Ising model, Chin. J. Phys. 63 (2020), pp. 375–381. doi:10.1016/j.cjph.2019.11.022.
  • Y.G. Yıldız and G. D, Yıldız, modeling of the magnetization and magnetocaloric effect in Ni2MnGa Heusler alloy with the effective field theory. J. Low Temp. Phys. 207 (2022), pp. 171–180. doi:10.1007/s10909-022-02706-y.
  • G.D. Yıldız, Intersection magnetization and temperature revealed by FCC-FCT phase transformation in the FePd Binary alloy system. J. Supercond. Nov. Magn. 33 (2020), pp. 2051–2058. doi:10.1007/s10948-020-05447-9.
  • Y.G. Yıldız, Exchange bias effect revealed by irreversible structural transformation between the HCP and FCC structures of Cobalt nanoparticles. Phase Trans. 93 (2020), pp. 429–437. doi:10.1080/01411594.2020.1743837.
  • G.D. Yıldız, Y.G. Yıldız, and N. Şarlı, Spin induced quantum tunneling of the magnetization. Spin 11 (2021), pp. 2150011. doi:10.1142/S2010324721500119.
  • M. Keskin and N. Şarlı, Magnetic properties of the binary Nickel/Bismuth alloy. J. Magn. Magn. Mat. 437 (2017), pp. 1–6. doi:10.1016/j.jmmm.2017.04.053.
  • M. Keskin and N. Şarlı, Coexistence of ferromagnetism and superconductivity in NiBi-binary alloy. Chin. J. Phys. 60 (2019), pp. 502–509. doi:10.1016/j.cjph.2019.05.029.
  • H.Y. Ocak, G.D. Yıldız, Y.G. Yıldız, B. Saatçi, R. Basar, and G. Sarıoglu, Transverse field effects of Al concentration on magnetic properties of B2-FeAl nanoparticle. Acta Phys. Pol. A 139 (2021), pp. 20–24. doi:10.12693/APhysPolA.139.20.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Hvasnicka, J. Luitz, and K. Schwarz, Techn. Univ. Wien, Austria, ISBN 3-9501031-1-2 (2001).
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102 (2009), p. 226401. doi:10.1103/PhysRevLett.102.226401.
  • J.P. Perdew, S. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Let. 77 (1996), pp. 3865–3868. doi:10.1103/PhysRevLett.77.3865.
  • P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, and L.D. Marks, WIEN2k: An APW + lo program for calculating the properties of solids. J. Chem. Phys. 152 (2020), p. 074101. doi:10.1063/1.5143061.
  • M. Jamal, S.J. Asadabadi, I. Ahmad, and H.A.R. Aliabad, Elastic constants of cubic crystals. Com. Mat. Sci. 95 (2014), pp. 592–599. doi:10.1016/j.commatsci.2014.08.027.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci., U. S. A. 30 (1944), pp. 244–247.
  • E. Şaşıoğlu, L.M. Sandratskii, and P. Bruno, First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb). Phys. Rev. B 70 (2004), p. 024427. doi:10.1103/PhysRevB.70.024427.
  • L.J. Bennett and G. Jones, The influence of the hubbard U parameter in simulating the catalytic behaviour of cerium oxide. Phys. Chem. Chem. Phys. 16 (2014), pp. 21032–21038. doi:10.1039/C4CP00928B.
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 57 (1998), p. 1505. doi:10.1103/PhysRevB.57.1505.
  • J.C. Slater, The ferromagnetism of Nickel. II. Temperature effects. Phys. Rev. 49 (1936), p. 931. doi:10.1103/PhysRev.49.931.
  • L. Pauling, The nature of the interatomic forces in metals. Phys. Rev. 54 (1938), p. 899. doi:10.1103/PhysRev.54.899.
  • J. Kübler, First principle theory of metallic magnetism. Phys. B C 127 (1984), p. 257. doi:10.1016/S0378-4363(84)80039-X.
  • M. Born and K. Huang, Clarendon, Oxford, 1954, p. 420. doi:10.1107/S0365110X56002370.
  • M. Evecen and Y. Çiftci, Theoretical investigation of the electronic structure, elastic, dynamic properties of intermetallic compound NiBe under pressure. Eur. Phys. J. B 94 (2021), p. 19. doi:10.1140/epjb/s10051-020-00044-0.
  • Y. He, V. Cvetkovic, and C.M. Varma, Elastic properties of a class of solids with negative thermal expansion. Phys. Rev. B 82 (2010), p. 014111. doi:10.1103/PhysRevB.82.014111.
  • W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mat. Sci. 57 (2012), pp. 487–656. doi:10.1016/j.pmatsci.2011.07.001.
  • E.G. Özdemir and S. Doğruer, Electronic, magnetic, and pressure-induced elastic investigaments of MnY2O4 oxide spinel. Eur. Phys. J. Plus 138 (2023), pp. 1–8. doi:10.1140/epjp/s13360-022-03580-z.
  • H. Bouafia, B. Sahli, M. Bousmaha, B. Djebour, A. Dorbane, S. Mokrane, and S. Hiadsi, Insight into elastic anisotropy, mechanical and dynamical stability, electronic properties, bonding and weak interactions analysis of LuAuSn Half-Heusler. Sol. State Sci. 118 (2021), p. 106677. doi:10.1016/j.solidstatesciences.2021.106677.
  • D. Amari, M. Mokhtari, F. Dahmane, and G. Benabdellah, Structural, elastic, electronic, magnetic, and half-metallic properties of a novel rare earth-based quaternary Heusler Alloys LaXTiSi (X = Co, Rh, Ir). Emergent Mat. 6 (2022), pp. 299–306. doi:10.1007/s42247-022-00414-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.