51
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Optical properties and Landau quantisations in twisted bilayer graphene

, , &
Pages 180-204 | Received 24 Mar 2023, Accepted 13 Sep 2023, Published online: 04 Dec 2023

References

  • H. Schmidt, T. Ludtke, P. Barthold, E. McCann, V.I. Fal'ko, and R.J. Haug, Tunable graphene system with two decoupled monolayers, Appl. Phys. Lett. 93 (2008), pp. 172108.
  • C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de-Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science 312 (2006), pp. 1191–1196.
  • J. Hass, R. Feng, J.E. Millan-Otoya, X. Li, M. Sprinkle, P.N. First, W.A. de Heer, E.H. Conrad, and C. Berger, Structural properties of the multilayer graphene/4H-SiC(0001¯) system as determined by surface X-ray diffraction, Phys. Rev. B 75 (2007), pp. 214109.
  • K.H. Zhang and A.J. Hart, Growth of bilayer graphene on insulating substrates, ACS Nano 5 (2011), pp. 8187–92.
  • J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, and E.H. Conrad, Why multilayer graphene on 4H-SiC(0001¯) behaves like a single sheet of graphene, Phys. Rev. Lett. 100 (2008), pp. 125504.
  • Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (2018), pp. 43–50.
  • M. Yankowitz, S.W. Chen, H. Polshyn, Y.X. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A.F. Young, and C.R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363 (2019), pp. 1059–1064.
  • G. Li, A. Luican, J.M.B. Lopes dos Santos, A.H. Castro Neto, A. Reina, J. Kong, and E.Y. Andrei, Observation of Van Hove singularities in twisted graphene layers, Nat. Phys. 6 (2010), pp. 109–113.
  • I. Brihuega, P. Mallet, H. Gonzalez-Herrero, G. Trambly de Laissardiere, M.M. Ugeda, L. Magaud, J.M. Gomez-Rodriguez, F. Yndurain, and J.-Y. Veuillen, Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis, Phys. Rev. Lett. 109 (2012), pp. 196802.
  • K.S. Kim, A.L. Walter, L. Moreschini, T. Seyller, K. Horn, E. Rotenberg, and A. Bostwick, Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene, Nat. Mater. 12 (2013), pp. 887–892.
  • O. Thta, J.T. Robinson, P.J. Feibelman, A. Bostwick, E. Rotenberg, and T.E. Beechem, Evidence for interlayer coupling and Moiré periodic potentials in twisted bilayer graphene, Phys. Rev. Lett. 109 (2012), pp. 186807.
  • E.J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene, Phys. Rev. B 81 (2010), pp. 161405.
  • E.S. Morell, M. Pacheco, L. Chico, and L. Brey, Electronic properties of twisted trilayer graphene, Phys. Rev. B 87 (2013), pp. 125414.
  • P. Moon and M. Koshino, Energy spectrum and quantum Hall effect in twisted bilayer graphene, Phys. Rev. B 85 (2012), pp. 195458.
  • Z.F. Wang, F. Liu, and M.Y. Chou, Fractal Landau-level spectra in twisted bilayer graphene, Nano Lett. 12 (2012), pp. 3833–3838.
  • B. Fallahazad, Y. Hao, K. Lee, S. Kim, R.S. Ruoff, and E. Tutuc, Quantum Hall effect in Bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition, Phys. Rev. B 85 (2012), pp. 201408.
  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991), pp. 56–58.
  • Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (2018), pp. 43–50.
  • Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv. Mater.22 (2010), pp. 3723–3728.
  • F.L. Shyu and M.F. Lin, Electronic and optical properties of narrow-gap carbon nanotubes, J. Phys. Soc. Jpn. 71 (2002), pp. 1820–1823.
  • R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60 (1998), pp. 2204–2206.
  • J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391 (1998), pp. 59–62.
  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004), pp. 666–669.
  • H.C. Chung, C.P. Chang, C.Y. Lin, and M.F. Lin, Electronic and optical properties of graphene nanoribbons in external fields, Phys. Chem. Chem. Phys. 18 (2016), pp. 7573–7616.
  • C. Tao, L. Jiao, O.V. Yazyev, Y.C. Chen, J. Feng, X. Zhang X, R.B. Capaz, J.M. Tour, A. Zettl, S.G. Louie, H. Dai, and M.F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons, Nat. Phys. 7 (2011), pp. 616–620.
  • L. Brey and H.A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Phys. Rev. B 73 (2006), pp. 235411.
  • M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73 (2006), pp. 045432.
  • M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65 (1996), pp. 1920–1923.
  • J. Li, S. Sanz, M. Corso, D.J. Choi, D. Pena, T. Frederiksen, and J.I. Pascual, Single spin localization and manipulation in graphene open-shell nanostructures, Nat. Commun. 10 (2019), pp. 200.
  • C.Y. Lin, J.Y. Wu, Y.J. Ou, Y.H. Chiu, and M.F. Lin, Magneto- electronic properties of multilayer graphenes, Phys. Chem. Chem. Phys. 17 (2015), pp. 26008–35.
  • C.Y. Lin, T.N. Do, Y.K. Huang, and M.F. Lin, Electronic and Optical Properties of Graphene in Magnetic and Electric Fields. IOP Concise Physics, Morgan & Claypool Publishers, San Raefel, CA, USA, 2017.
  • M.Y. Li, C.H. Chen, Y. Shi, and L.J. Li, Heterostructures based on two-dimensional layered materials and their potential applications, Mater. Today 19 (2016), pp. 322–335.
  • R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320 (2008), pp. 1308.
  • M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, and M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101 (2008), pp. 267601.
  • F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y.R. Shen, Gate-variable optical transitions in graphene, Science 320 (2008), pp. 206–209.
  • T.N. Do, C.P. Chang, P.H. Shih, and M.F. Lin, Stacking-enriched magneto-transport properties of few-layer graphenes, Phys. Chem. Chem. Phys. 19 (2017), pp. 29525–29533.
  • Y.K. Huang, S.C. Chen, Y.H. Ho, C.Y. Lin, and M.F. Lin, Feature-rich magnetic quantization in sliding bilayer graphenes, Sci. Rep. 4 (2014), pp. 7509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.