169
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of pre-existing configurations of dislocations on the initial pop-in load during nanoindentation in a CrCoNi medium-entropy alloy

, ORCID Icon, , ORCID Icon, , , & show all
Pages 137-160 | Received 28 Jun 2023, Accepted 24 Nov 2023, Published online: 14 Dec 2023

References

  • C.G. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Switzerland, 2016.
  • B. Gludovatz, A. Hohenwarter, K.V. Thurston, H. Bei, Z. Wu, E.P. George, and R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7 (2016), pp. 1–8.
  • P. Sathiyamoorthi, J. Moon, J.W. Bae, P. Asghari-Rad, and H.S. Kim, Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing. Scr. Mater. 163 (2019), pp. 152–156.
  • G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128 (2017), pp. 292–303.
  • X. Yang, Y. Xi, C. He, H. Chen, X. Zhang, and S. Tu, Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation. Scr. Mater. 209 (2022), p. 114364.
  • D.Q. Doan, A.S. Tran, and N.C. Vu, Grain and twin boundaries dependent mechanical behaviour of FeCoCrNiCu high-entropy alloy. Mater. Today Commun. 34 (2023), p. 104975.
  • G. Oliver and W.C. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing experiments. J. Mater. Res. 7(6) (1994), pp. 1564–1583.
  • W.C. Oliver and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Mater. Res. Soc. 19(1) (2004), pp. 3–20.
  • D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10) (1998), pp. 3605–3617.
  • C. Tromas, P. Villechaise, and S. Dubois, Slip line analysis around nanoindentation imprints in Ti3SnC2: a new insight into plasticity of MAX-phase materials. Philos. Mag. 91(7-9) (2011), pp. 1265–1275.
  • D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner, Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67(17) (2003), pp. 1–4.
  • Y. Xia, Y. Gao, G.M. Pharr, and H. Bei, Single versus successive pop-in modes in nanoindentation tests of single crystals. J. Mater. Res. 31(14) (2016), pp. 2065–2075.
  • N. Zhou, K.I. Elkhodary, X. Huang, S. Tang, and Y. Li, Dislocation structure and dynamics govern pop-in modes of nanoindentation on single-crystal metals. Philos. Mag. 100(12) (2020), pp. 1585–1606.
  • H. Bei, Y.F. Gao, S. Shim, E.P. George, and G.M. Pharr, Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77(6) (2008), pp. 2–5.
  • A. Zbib and D.F. Bahr, Dislocation nucleation and source activation during nanoindentation yield points. Metall. Mater. Trans. A 38 (2007), pp. 2249–2255.
  • A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, and S. Suresh, Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48(9) (2000), pp. 2277–2295.
  • D. Chrobak, K. Nordlund, and R. Nowak, Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98 (2007), pp. 1–4.
  • G. Laplanche, J. Pfetzing-Micklich, and G. Eggeler, Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys. Acta Mater. 78 (2014), pp. 144–160.
  • B. Bor, D. Giuntini, B. Domènech, M.V. Swain, and G.A. Schneider, Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites. J. Eur. Ceram. Soc. 39(10) (2019), pp. 3247–3256.
  • D. Rodriguez-Marek, M. Pang, and D.F. Bahr, Mechanical measurements of passive film fracture on an austenitic stainless steel. Metall. Mater. Trans. A 34 (2003), pp. 1291–1296.
  • D. Wu, J.S.C. Jang, and T.G. Nieh, Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method. Intermetallics 68 (2016), pp. 118–127.
  • S. Mridha, M. Sadeghilaridjani, and S. Mukherjee, Activation volume and energy for dislocation nucleation in multi-principal element alloys. Metals. 9(2) (2019), p. 263.
  • S. Sun, Y. Yang, C. Han, G. Sun, Y. Chen, H. Zong, J. Hu, S. Han, X. Liao, X. Ding, and J. Lian, Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy. J. Mater. Sci. Technol. 127 (2022), pp. 98–107.
  • K. Sekido, T. Ohmura, L. Zhang, T. Hara, and K. Tsuzaki, The effect of interstitial carbon on the initiation of plastic deformation of steels. Mater. Sci. Eng. A 530(1) (2011), pp. 396–401.
  • F. Pöhl, Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation. Sci. Rep. 9 (2019), pp. 1–12.
  • S. Shim, H. Bei, E.P. George, and G.M. Pharr, A different type of indentation size effect. Scr. Mater. 59 (2008), pp. 1095–1098.
  • K. Gan, D. Yan, S. Zhu, and Z. Li, Interstitial effects on the incipient plasticity and dislocation behavior of a metastable high-entropy alloy: Nanoindentation experiments and statistical modeling. Acta Mater. 206 (2021), p. 116633.
  • R.D.K. Misra, Z. Zhang, Z. Jia, M.C. Somani, and L.P. Karjalainen, Probing deformation processes in near-defect free volume in high strength–high ductility nanograined/ultrafine-grained (NG/UFG) metastable austenitic stainless steels. Scripta Mater. 63(11) (2010), pp. 1057–1060.
  • E.J. Seo, J.K. Kim, L. Cho, J. Mola, C.Y. Oh, and B.C. De Cooman, Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning. Acta Mater. 135 (2017), pp. 112–123.
  • D. Hua, Q. Xia, W. Wang, Q. Zhou, S. Li, D. Qian, and H. Wang, Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. Int. J. Plast. 142 (2021), p. 102997.
  • J.R. Morris, H. Bei, G.M. Pharr, and E.P. George, Size effects and stochastic behavior of nanoindentation pop in. Phys. Rev. Lett. 106(16) (2011), pp. 1–4.
  • P. Engels, A. Ma, and A. Hartmaier, Continuum simulation of the evolution of dislocation densities during nanoindentation. Int. J. Plast. 38 (2012), pp. 159–169.
  • U. Brückner, A. Epishin, and T. Link, Local x-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys. Acta Mater. 45(12) (1997), pp. 5223–5231.
  • A.B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P.P. Choi, D. Raabe, A. Dlouhy, J. Müller, and E. Spencer, Advanced scale bridging microstructure analysis of single crystal Ni-base superalloys. Adv. Eng. Mater. 17 (2015), pp. 216–230.
  • G. Laplanche, M. Schneider, F. Scholz, J. Frenzel, G. Eggeler, and J. Schreuer, Processing of a single-crystalline CrCoNi medium-entropy alloy and evolution of its thermal expansion and elastic stiffness coefficients with temperature. Scr. Mater. 177 (2020), pp. 44–48.
  • H. Mansour, J. Guyon, M.A. Crimp, N. Gey, B. Beausir, and N. Maloufi, Accurate electron channeling contrast analysis of dislocations in fine-grained bulk materials. Scr. Mater. 84–85 (2014), pp. 11–14.
  • H. Kriaa, A. Guitton, and N. Maloufi, Fundamental and experimental aspects of diffraction for characterising dislocations by electron channeling contrast imaging in scanning electron. Sci. Rep. 17(1) (2017), pp. 1–8.
  • H. Kriaa, A. Guitton, and N. Maloufi, Modeling dislocation contrasts obtained by accurate-Electron Channeling Contrast Imaging for characterising deformation mechanisms in bulk materials. Materials 12(10) (2019), p. 1587.
  • H. Kriaa, A. Guitton, and N. Maloufi, Modelling electron channeling contrast intensity of stacking fault and twin boundary using crystal thickness effect. Materials 14(7) (2021), p. 1696.
  • J. Guyon, H. Mansour, N. Gey, M.A. Crimp, S. Chalal, and N. Maloufi, Sub-micron resolution selected area electron channeling patterns. Ultramicroscopy 134 (2015), pp. 34–44.
  • H. Mansour, M.A. Crimp, N. Gey, and N. Maloufi, Accurate electron channeling contrast analysis of a low angle sub-grain boundary. Scr. Mater. 109 (2015), pp. 76–79.
  • A. Guitton, H. Kriaa, E. Bouzy, J. Guyon, and N. Maloufi, A dislocation-scale characterisation of the evolution of deformation microstructures around nanoindentation imprints in a TiAl alloy. Materials 11(2) (2018), p. 305.
  • J. Li, G. Dehm, and C. Kirchlechner, How close can indents be placed without risking an erroneous pop-in statistics? Materialia 7 (2019), p. 100378.
  • F. Habiyaremye, A. Guitton, F. Schäfer, F. Scholz, M. Schneider, J. Frenzel, G. Laplanche, and N. Maloufi, Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions. Mater. Sci. Eng. A 817 (2021), p. 141364.
  • G. Laplanche, P. Gadaud, C. Bärsch, K. Demtröder, C. Reinhart, J. Schreuer, and E.P. George, Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 746 (2018), pp. 244–255.
  • C.A. Schuh and A.C. Lund, Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19(7) (2004), pp. 2152–2158.
  • W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek, Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44(9) (1996), pp. 3585–3598.
  • J.C. Crone, L.B. Munday, J.J. Ramsey, and J. Knap, Modeling the effect of dislocation density on the strength statistics in nanoindentation. Model. Simul. Mater. Sci. Eng. 26 (2017), p. 015009.
  • P. Hallensleben, F. Scholz, P. Thome, H. Schaar, I. Steinbach, G. Eggeler, and J. Frenzel, On crystal mosaicity in single crystal Ni-based superalloys. Crystals 9(3) (2019), p. 149.
  • P. Hallensleben, H. Schaar, P. Thome, N. Jöns, A. Jafarisadeh, I. Steinbach, and J. Frenzel, On the evolution of cast microstructures during the processing of single crystal Ni-base superalloys using a Bridgman seed technique. Mater. Des. 128 (2017), pp. 98–111.
  • Y.N. Picard, J.D. Caldwell, M.E. Twigg, C.R. Eddy Jr, M.A. Mastro, R.L. Henry, and R.T. Holm, Nondestructive analysis of threading dislocations in GaN by electron channeling contrast imaging. Appl. Phys. Lett. 91 (2007), pp. 89–92.
  • M. Ben Saada, N. Gey, B. Beausir, X. Iltis, H. Mansour, and N. Maloufi, Sub-boundaries induced by dislocational creep in uranium dioxide analyzed by advanced diffraction and channeling electron microscopy. Mater. Charact. 133 (2017), pp. 112–121.
  • J.P. Spencer, C.J. Humphreys, and P.B. Hirsch, A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons. Philos. Mag. 26(1) (1972), pp. 193–213.
  • M. Koyama, M. Seo, K. Nakafuji, and K. Tsuzaki, Stacking fault aggregation during cooling composing FCC–HCP martensitic transformation revealed by in-situ electron channeling contrast imaging in an Fe-high Mn alloy. Sci. Technol. Adv. Mater. 22(1) (2021), pp. 135–140.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 4th ed., Butterworth-Heinemann, Oxford, 2001.
  • B. Pang, I.P. Jones, Y.L. Chiu, J.C.F. Millett, and G. Whiteman, Electron channelling contrast imaging of dislocations in a conventional SEM. Philos. Mag. 97(5) (2017), pp. 346–359.
  • K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., John Wiley & Sons, Inc, Hoboken, USA, 1982.
  • T.A. Michalske and J.E. Houston, Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46 (1998), pp. 391–396.
  • Y.L. Chiu and A.H.W. Ngan, Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50(6) (2002), pp. 1599–1611.
  • H.S. Leipner, D. Lorenz, A. Zeckzer, H. Lei, and P. Grau, Nanoindentation pop-in effect in semiconductors. Phys. B: Condens. Matter. 308–310 (2001), pp. 446–449.
  • J.K. Mason, A.C. Lund, and C.A. Schuh, Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73 (2006), pp. 1–14.
  • R.J. Wagner, L. Ma, F. Tavazza, and L.E. Levine, Dislocation nucleation during nanoindentation of aluminum. J. Appl. Phys. 104 (2008), p. 114311.
  • C. Caër, E. Patoor, S. Berbenni, and J.S. Lecomte, Stress-induced pop-in and pop-out nanoindentation events in CuAlBe shape memory alloys. Mater. Sci. Eng. A 587 (2013), pp. 304–312.
  • C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy. Acta Mater. 61 (2013), pp. 2993–3001.
  • L. Zhang and T. Ohmura, Plasticity initiation and evolution during nanoindentation of an iron-3% silicon crystal. Phys. Rev. Lett. 112(14) (2014), pp. 1–5.
  • A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris, Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19 (2004), pp. 176–182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.