9,575
Views
6
CrossRef citations to date
0
Altmetric
Articles

Safe, clean, proliferation resistant and cost-effective Thorium-based Molten Salt Reactors for sustainable development

Pages 514-537 | Received 02 Feb 2021, Accepted 05 May 2021, Published online: 06 Jun 2021

References

  • Ade, B., A. Worrall, J. Powers, S. Bowman, G. Flanagan, and J. Gehin. 2014. Safety and Regulatory Issues of the Thorium Fuel Cycle. Oak Ridge, TN: U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Oak Ridge National Laboratory.
  • Allibert, M., M. Aufiero, M. Brovchenko, S. Delpech, V. Ghetta, D. Heuer, A. Laureau, and E. Merle-Lucotte. 2016. “Molten Salt Fast Reactors.” In Handbook of Generation IV Nuclear Reactors, edited by I. L. Pioro, 157–188. Cambridge: Woodhead Publishing.
  • ANL. 2018. Pyroprocessing Technologies: Recycling Used Nuclear Fuel for a Sustainable Energy Future. Lemont, IL: US Department of Energy, Argonne National Laboratory (ANL). https://www.anl.gov/sites/www/files/2018-2010/Pyroprocessing_brochure_2018.pdf.
  • Arnott, R. D. 2003. “Dividends and the Three Dwarfs.” Financial Analysts Journal 59 (2): 4–6.
  • Ault, T., B. van Gosen, S. Krahn, and A. Croff. 2016. “Natural Thorium Resources and Recovery: Options and Impacts.” Nuclear Technology 194 (May): 136–151.
  • Bauer, S. 2018. Seawater Yields First Grams of Yellowcake. Seqium, WA: Pacific Northwest National Laboratory.
  • Bernstein, P. L. 1976. “The Time of Your Life.” The Journal of Portfolio Management 2 (4): 4.
  • Berthélemy, M., and L. Escobar Rangel. 2015. “Nuclear Reactors’ Construction Costs: The Role of Lead-Time, Standardization and Technological Progress.” Energy Policy 82 (July): 118–130.
  • Chang, K. 2002. “Alvin Radkowsky, 86, Developer of a Safer Nuclear Reactor Fuel.” The New York Times. March 5th, Section C.
  • Cochran, J. K., A. E. Carey, E. R. Sholkovitz, and L. D. Surprenant. 1986. “The Geochemistry of Uranium and Thorium in Coastal Marine Sediments and Sediment Pore Waters.” Geochimica et Cosmochimica Acta 50: 663–680.
  • Cohen, B. L. 1983. “Breeder Reactors: A Renewable Energy Source.” American Journal of Physics 51 (1): 75–76.
  • Conca, J. 2016. Uranium Seawater Extraction Makes Nuclear Power Completely Renewable Forbes. Jersey City, NJ. https://www.forbes.com/sites/jamesconca/2016/2007/2001/uranium-seawater-extraction-makes-nuclear-power-completely-renewable/.
  • Darling, S. B., F. You, T. Veselkad, and A. Velos. 2011. “Assumptions and the Levelized Cost of Energy for Photovoltaics.” Energy & Environmmental Science 4 (9): 3077–3704.
  • David, S., E. Huffer, and H. Nifenecker. 2007. “Revisiting the Thorium-Uranium Nuclear Fuel Cycle.” EuroPhysicsNews 38 (2): 24–27.
  • Delene, J. G. 1994. “Advanced Fission and Fossil Plant Economics-implications for Fusion.” Fusion Technology 26 (3, Part II): 1105–1110.
  • Delene, J. G., J. Sheffield, K. A. Williams, R. L. Reid, and S. W. Hadley. 1999. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion. Oak Ridge, TN: Oak Ridge National Laboratory (ORNL).
  • Delpech, S., E. Merle-Lucotte, D. Heuer, M. A. Allibert, V. Ghetta, C. Le-Brun, X. Doligez, and G. S. Picard. 2009. “Reactor Physic and Reprocessing Scheme for Innovative Molten Salt Reactor System.” Journal of Fluorine Chemistry 130 (1): 11–17.
  • Dimson, E., P. Marsh, and M. Staunton. 2008. “Chapter 11 – The Worldwide Equity Premium: A Smaller Puzzle.” In Handbook of the Equity Risk Premium, edited by R. Mehra, 467–514. Amsterdam: Elsevier.
  • Doemeland, D., and J. Trevino. 2014. Which World Bank Reports Are Widely Read? Policy Research Working Paper. Washington, DC: World Bank, Development Economics Vice Presidency, Operations and Strategy Unit, Group no. WPS6851.
  • Emblemsvåg, J. 2003. Life-cycle Costing: Using Activity-based Costing and Monte Carlo Methods to Manage Future Costs and Risks. Hoboken, NJ: John Wiley & Sons.
  • Emblemsvåg, J. 2020. “On the Levelised Cost of Energy of Windfarms.” International Journal of Sustainable Energy 39 (7): 700–718.
  • Emblemsvåg, J. 2021a. “On the Levelized Cost of Energy of Solar Photovoltaics.” International Journal of Sustainable Energy 40. doi: https://doi.org/10.1080/14786451.2020.1867139.
  • Emblemsvåg, J. 2021b. “How Thorium-based Molten Salt Reactors Can Provide Clean, Safe, and Cost-effective Technology for Deep-sea Shipping.” Marine Technology Society Journal 55 (1): 56–72.
  • EMWG. 2007. Cost Estimating Guidelines for Generation IV Nuclear Energy Systems (GIF/EMWG/2007/004). Geneva, Generation IV International Forum, Economic Modeling Working Group (EMWG).
  • Engel, J. R., H. F. Bauman, J. F. Dearing, W. R. Grimes, E. H. McCoy, and W. A. Rhoades. 1980. Conceptual Design Characteristics of a Denatured Molten-Salt Reactor with Once-through Fueling. Oak Ridge, TN: Oak Ridge National Laboratory.
  • EPRI. 2015. Program on Technology Innovation: Technology Assessment of a Molten Salt Reactor Design. Palo Alto, CA: Electric Power Research Institute (EPRI).
  • Estrada, J. 2014. “Stocks, Bonds, Risk, and the Holding Period: An International Perspective.” The Journal of Wealth Management 16 (2): 25–44.
  • Fanghänel, T., J.-P. Glatz, R. J. M. Konings, V. V. Rondinella, and J. Somers. 2010. “Transuranium Elements in the Nuclear Fuel Cycle.” In Handbook of Nuclear Engineering, edited by D. G. Cacuci, 2935–2998. Boston, MA: Springer.
  • Forsberg, C. W. 2006. Molten-Salt-Reactor Technology Gaps. 2006 International Congress on the Advances in Nuclear Power Plants. Reno, NV: American Nuclear Society.
  • Furukawa, Kazuo, Kazuto Arakawa, L. Berrin Erbay, Yasuhiko Ito, Yoshio Kato, Hanna Kiyavitskaya, Alfred Lecocq, et al. 2008. “A Road Map for the Realization of Global-scale Thorium Breeding Fuel Cycle by Single Molten-Fluoride Flow.” Energy Conversion and Management 49: 1832–1848.
  • Furukawa, K., H. Numata, Y. Kato, K. Mitachi, R. Yoshioka, A. Furuhashi, Y. Sato, and K. Arakawa. 2005. “New Primary Energy Source by Thorium Molten-Salt Reactor Technology.” Electrochemistry 73 (8): 552–563.
  • Gormley, R., J. Sinkiewicz, and B. Wolfe. 2020. License Renewals Could Modernize U.S. Nuclear; Supply Base Will Need to Keep Pace: Power Magazine. Rockville, MD. https://www.powermag.com/license-renewals-could-modernize-u-s-nuclear-supply-base-will-need-to-keep-pace/
  • Greaves, E. D., K. Furukawa, L. Sajo-Bohus, and H. Barros. 2012. “The Case for the Thorium Molten Salt Reactor.” AIP Conference Proceedings 1423 (453). https://doi.org/https://doi.org/10.1063/1.3688845.
  • Hargraves, R. 2012. Thorium: Energy Cheaper Than Coal. Scotts Valley, CA: CreateSpace Independent Publishing Platform, Amazon.
  • Hargraves, R., and R. Moir. 2010. “Liquid Fluoride Thorium Reactors: An Old Idea in Nuclear Power Gets Reexamined.” American Scientist 98 (July-August): 304–313.
  • Haubenreich, P. N., and J. R. Engel. 1970. “Experience with the Molten-salt Reactor Experiment.” Nuclear Applications and Technology 8 (2): 118–136.
  • Héder, M. 2017. “From NASA to EU: The Evolution of the TRL Scale in Public Sector Innovation.” The Innovation Journal: The Public Sector Innovation Journal 22 (2): Paper no. 3.
  • Hollenbach, D. F., and J. M. Herndon. 2001. “Deep-earth Reactor: Nuclear Fission, Helium, and the Geomagnetic Field.” Proceedings of the National Academy of Sciences 98 (20): 11085–11090.
  • Huh, C.-A., W. S. Moore, and David C. Kadko. 1989. “Oceanic 232Th: A Reconnaissance and Implications of Global Distribution from Manganese Nodules.” Geochimica et Cosmochimica Acta 53: 1357–1366.
  • IAEA. 2005. Thorium Fuel Cycle — Potential Benefits and Challenges. IAEA Nuclear Energy Series. Wien: International Atomic Energy Agency (IAEA), Nuclear Fuel Cycle and Materials Section.
  • IAEA. 2018. Status and Trends in Spent Fuel and Radioactive Waste Management. IAEA Nuclear Energy Series. Wien: International Atomic Energy Agency (IAEA).
  • IAEA. 2019. Nuclear Power Reactors in the World. Vienna: International Atomic Energy Agency.
  • IAEA. 2020. Advances in Small Modular Reactor Technology Developments – A Supplement to: IAEA Advanced Reactors Information System (ARIS).IAEA Nuclear Energy Series. Wien: International Atomic Energy Agency (IAEA), Department of Nuclear Energy, Nuclear Power Technology Development Section (NPTDS).
  • IPCC. 2014. Climate Change 2014 Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
  • IRENA. 2012. Renewable Energy Technologies: Cost Analysis Series. Abu Dhabi: United Arab Emirates,International Renewable Energy Agency (IRENA), IRENA Innovation and Technology Centre.
  • Jarvis, S., O. Deschenes, and A. Jha. 2019. The Private and External Costs of Germany's Nuclear Phase-Out. Cambridge, MA: National Bureau of Economic Research (NBER).
  • Jiang, M., H. Xu, and Z. Dai. 2012. “Advanced Fission Energy Program-TMSR Nuclear Energy System.” Bulletin of Chinese Academy of Sciences 27: 366–374.
  • Juhasz, A. J., R. A. Rarick, and R. Rangarajan. 2009. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology: NASA Scientific and Technical Information (STI). Cleveland, OH: National Aeronautics and Space Administration (NASA), Glenn Research Center.
  • Kamei, T. 2011. “Implementation Strategy of Thorium Nuclear Power in the Context of Global Warming.” In Nuclear Power: Deployment, Operation and Sustainability, edited by P. Tsvetkov, 365–382. Rijeka: InTech.
  • Kazimi, M. S. 2004. “Thorium Fuel for Nuclear Energy.” American Scientist 91 (September–October): 408–415.
  • Knight, S. 2008. “New power generation.” Financial Times.
  • LANL. 2009. Plutonium Processing at Los Alamos. Actinide Research Quarterly. Los Alamos: Los Alamos National Laboratory (LANL).
  • LeBlanc, D. 2010. “Molten Salt Reactors: A New Beginning for an Old Idea.” Nuclear Engineering and Design 240 (6): 1644–1656.
  • Lovering, J. R., A. Yip, and T. Nordhaus. 2016. “Historical Construction Costs of Global Nuclear Power Reactors.” Energy Policy 91 (April): 371–382.
  • MacPherson, H. G. 1985. “The Molten Salt Reactor Adventure.” Nuclear Science and Engineering 90: 374–380.
  • Markandya, A., and P. Wilkinson. 2007. “Electricity Generation and Health.” The Lancet 370 (9591): 979–990.
  • Martin, R. 2009. “Utanium Is so Last Century – Enter Thorium, the New Green Nuke.” Wired Magazine.
  • Martin, R. 2012. Super Fuel: Thorium, the Green Energy Source for the Future. New York: Plagrave Macmillan.
  • Mathieu, L., D. Heuer, R. Brissot, C. Garzenne, C. Le Brun, D. Lecarpentier, E. Liatard, et al. 2006. “The Thorium Molten Salt Reactor: Moving on from the MSBR.” Progress in Nuclear Energy 48: 664–679.
  • Mignacca, B., and G. Locatelli. 2020. “Economics and Finance of Molten Salt Reactors.” Progress in Nuclear Energy 129. doi:https://doi.org/10.1016/j.pnucene.2020.103503.
  • MIT. 2003. The Future of Nuclear Power – An Interdisciplinary MIT Study. Boston, MA: Massachusetts Institute of Technology.
  • MIT. 2009. Update of the MIT 2003 The Future of Nuclear Power – An Interdisciplinary MIT Study. Boston, MA: Massachusetts Institute of Technology.
  • MIT. 2018. The Future of Nuclear Energy in a Carbon-Constrained World – An Interdisciplinary MIT Study. Boston, MA: Massachusetts Institute of Technology.
  • Moir, R. W. 2002. “The Cost of Electricity from Molten Salt Reactors (MSR).” Nuclear Technology 138 (1): 93–95.
  • Moir, R. W., and E. Teller. 2005. “Thorium-fueled Underground Power Plant Based on Molten Salt Technology.” Nuclear Technology 151 (September): 334–340.
  • National Audit Office. 2017. Hinkley Point C. London: National Audit Office, Department for Business, Energy & Industrial Strategy.
  • Nozaki, Y., and Y. Horibe. 1983. “Alpha-emitting Thorium Isotopes in Northwest Pacific Deep Waters.” Earth and Planetary Science Letters 65: 39–50.
  • NRC. 2021a. Three Mile Island Accident. Backgrounder. Washington, DC: United States Nuclear Regulatory Commission (NRC).
  • NRC. 2021b. Fermi – Unit 1. Washington, DC: United States Nuclear Regulatory Commission (NRC). https://www.nrc.gov/info-finder/decommissioning/power-reactor/enrico-fermi-atomic-power-plant-unit-1.html.
  • OECD/NEA. 2012. Nuclear Energy Today. Paris: Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency.
  • OECD/NEA. 2015. Introduction of Thorium in the Nuclear Fuel Cycle; Short- to Long-term Considerations. Paris: Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency.
  • OECD/NEA and IAEA. 2008. Uranium 2008: Resources, Production and Demand (Red Book): A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. Paris: Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA).
  • OECD/NEA and IAEA. 2014. Uranium 2014: Resources, Production and Demand (Red Book): A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. Paris: Organization for Economic Cooperation and Development (OECD), Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA).
  • Olsson, L. E. 1994. “Energy-meteorology: A New Discipline.” Renewable Energy 5 (Part II): 1243–1246.
  • Ontario Power Authority. 2008. Facilitating the Development and Use of Renewable Energy and Enabling 2010 and 2025 Renewable Targets. Toronto: Ontario Power Authority (OPA).
  • ORNL. 2012. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy. Oak Ridge, TN: Oak Ridge National Laboratory (ORNL).
  • Peterson, P. F. 2003. “Multiple-Reheat Brayton Cycles for Nuclear Power Conversion with Molten Coolants.” Nuclear Technology 144 (3): 279–288.
  • Pioro, I. L. 2016. Handbook of Generation IV Nuclear Reactors.Woodhead Publishing Series in Energy. Cambridge: Woodhead Publishing.
  • Radkowsky, A. 1984. “The Thorium Nuclear Power's Future.” The New York Times. May 15th, Section A.
  • Radkowsky, A., and A. Galperin. 1998. “The Nonproliferative Light Water Thorium Reactor: A New Approach to Light Water Reactor Core Technology.” Nuclear Technology 124 (3): 215–222.
  • Reichenberg, L., F. Hedemus, M. Odenberger, and F. Johnsson. 2018. “The Marginal System LCOE of Variable Renewables – Evaluating High Penetration Levels of Wind and Solar in Europe.” Energy 152: 914–924.
  • Robertson, R. C. 1971. Conceptual Design Study of a Single-fluid Molten-salt Breeder Reactor. Oak Ridge, TN: U.S. Atomic Energy Commission, Oak Ridge National Laboratory (ORNL).
  • Robertson, R. C., O. L. Smith, R. B. Briggs, and E. S. Bettis. 1970. Two-fluid Molten-salt Breeder Reactor Design Study. Oak Ridge, TN: U.S. Atomic Energy Commission, Oak Ridge National Laboratory (ORNL).
  • Rodriguez, P., and C. V. Sundaram. 1981. “Nuclear and Materials Aspects of the Thorium Fuel Cycle.” Journal of Nuclear Materials 100 (1–3): 227–249.
  • Rogelj, J., D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, et al. 2018. “Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. Global Warming of 1.5°C.” In An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, edited by Valérie Masson-Delmotte, Panmao Zhai, Hans-Otto Pörtner, Debra Roberts, Jim Skea, Priyadarshi R. Shukla, Anna Pirani, etal, 93–174. Geneva: IPCC/WMO.
  • Rosenthal, M. W. 2009. An Account of Oak Ridge National Laboratory’s Thirteen Nuclear Reactors. Oak Ridge, TN: Oak Ridge National Laboratory (ORNL).
  • Rubbia, C. 2013. A Future for Thorium Power? The Thorium Energy Conference 2013. Geneva: CERN.
  • Rubbia, C., et al. 2016. “A Future for Thorium Power? Thorium Energy for the World: Proceedings of the ThEC13 Conference.” In CERN, Globe of Science and Innovation, Geneva, edited by J.-P. Revol and M. Bourquin, 9–25. Geneva: Springer.
  • Schaffer, M. B. 2013. “Abundant Thorium as an Alternative Nuclear Fuel: Important Waste Disposal and Weapon Proliferation Advantages.” Energy Policy 60 (September): 4–12.
  • Siemer, D. D. 2015. “Why the Molten Salt Fast Reactor (MSFR) is the ‘Best’ Gen IV Reactor.” Energy Science & Engineering 3 (2): 83–97.
  • Snyder, H. 2019. “Literature Review as a Research Methodology: An Overview and Guidelines.” Journal of Business Research 104 (November): 333–339.
  • Sovacool, B. K., R. Andersen, S. Sorensen, K. Sorensen, V. Tienda, A. Vainorius, O. M. Schirach, and F. Bjørn-Thygesen. 2016. “Balancing Safety with Sustainability: Assessing the Risk of Accidents for Modern Low-carbon Energy Systems.” Journal of Cleaner Production 112 (5): 3952–3965.
  • Tsouris, C. 2017. “Uranium Extraction: Fuel from Seawater.” Nature Energy 2. doi: https://doi.org/10.1038/nenergy.2017.22.
  • Ueckerdt, F., L. Hirth, G. Luderer, and O. Edenhofer. 2013. “System LCOE: What Are the Costs of Variable Renewables?” Energy 63: 61–75.
  • US EIA. 2019a. Electric Power Annual 2019. Washington, DC: US Energy Information Administration.
  • US EIA. 2019b. Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2019. Washington, DC: US Energy Information Administration.
  • Vijayan, P. K. 2013. Overview of Thorium Programme in India. Thorium Energy for the World. Proceedings of the ThEC13 Conference, October 27-31, 2013. Geneva: CERN.
  • Waltar, A. E., and A. B. Reynolds. 1981. Fast Breeder Reactors. New York: Pergamon Press.
  • Weinberg, A. M. 1997. “The Proto-History of the Molten Salt System.” Journal of Acceleration Plasma Research 2: 22–26.
  • Weinberg, A. M., and R. P. Hammond. 1970. “Limits to the Use of Energy.” American Scientist 58 (4): 412–418.
  • World Nuclear Association. 2011. Nuclear Power Reactor Characteristics.WNA Pocket Guide. London: World Nuclear Association.
  • World Nuclear Association. 2019. Economics of Nuclear Power. London: World Nuclear Association.
  • World Nuclear Association. 2020. Molten Salt Reactors. London: World Nuclear Association. https://www.world-nuclear.org/information-library/current-and-future-generation/molten-salt-reactors.aspx.
  • World Nuclear Association. 2021. Fukushima: Background on Reactors. London: World Nuclear Association.
  • Wu, J., J. Chen, X. Kang, X. Li, C. Yu, C. Zou, and X. Cai. 2019. “A Novel Concept for a Molten Salt Reactor Moderated by Heavy Water.” Annals of Nuclear Energy 132: 391–403.
  • Zou, C. Y., C. Z. Cai, C. G. Yu, J. H. Wu, and J. G. Chen. 2018. “Transition to Thorium Fuel Cycle for TMSR.” Nuclear Engineering and Design 330: 420–428.