748
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of CIS BIPV as a shading device on building life cycle energy performance

ORCID Icon & ORCID Icon
Pages 575-593 | Received 28 Mar 2022, Accepted 08 May 2023, Published online: 03 Jun 2023

References

  • Aaditya, G., and M. Mani. 2018. “BIPV: A Real-Time Building Performance Study for a Roof-Integrated Facility.” International Journal of Sustainable Energy 37 (3): 249–267. doi:10.1080/14786451.2016.1261864.
  • Ahmad, R. M., and R. M. Reffat. 2018. “A Comparative Study of Various Daylighting Systems in Office Buildings for Improving Energy Efficiency in Egypt.” Journal of Building Engineering 18: 360–376. doi:10.1016/j.jobe.2018.04.002.
  • Akbari Paydar, M. 2020. “Optimum Design of Building Integrated PV Module as a Movable Shading Device.” Sustainable Cities and Society 62: 102368. doi:10.1016/j.scs.2020.102368.
  • Alsema, E. 1998. “Energy Requirements of Thin-Film Solar Cell Modules – A Review.” Renewable and Sustainable Energy Reviews 2: 387–415. doi:10.1016/S1364-0321(98)00019-7.
  • Alsema, E. 2012. “Chapter IV-2 – Energy Payback Time and CO2 Emissions of PV Systems.” In Practical Handbook of Photovoltaics (Second Edition), Fundamentals and Applications, edited by Augustin McEvoy, Tom Markvart, and Luis Castañer, 1097–1117. Waltham, MA, USA: Academic Press.
  • Badescu, V., and F. Iacobescu. 2013. “Simple Technological Guidelines for the Implementation of the Romanian National Strategy on PV Systems.” Energy for Sustainable Development 17 (3): 220–227. doi:10.1016/j.esd.2012.12.003.
  • Berköz, E., Z. Y. Aygün, G. Kocaaslan, E. Yildiz, F. Ak, M. Küçükdoğu, D. Enarun, R. Ünver, A. K. Yener, and D. Yildiz. 1995. Energy Effective Housing and Settlement Design. [In Turkish.] TÜBİTAK İNTAG Project No: 201, İstanbul.
  • Biyik, E., M. Araz, A. Hepbasli, M. Shahrestani, R. Yao, L. Shao, E. Essah, et al. 2017. “A Key Review of Building Integrated Photovoltaic (BIPV) Systems.” Engineering Science and Technology, an International Journal 20 (3): 833–858. doi:10.1016/j.jestch.2017.01.009.
  • Bot, K., N. M. M. Ramos, R. M. S. F. Almeida, P. F. Pereira, and C. Monteiro. 2019. “Energy Performance of Buildings with On-site Energy Generation and Storage – An Integrated Assessment Using Dynamic Simulation.” Journal of Building Engineering 24: 100769. doi:10.1016/j.jobe.2019.100769.
  • Braun, P., and R. Rüther. 2010. “The Role of Grid-Connected, Building-Integrated Photovoltaic Generation in Commercial Building Energy and Power Loads in a Warm and Sunny Climate.” Energy Conversion and Management 51: 2457–2466. doi:10.1016/j.enconman.2010.04.013.
  • Cellura, M., A. Di Gangi, S. Longo, and A. Orioli. 2012. “Photovoltaic Electricity Scenario Analysis in Urban Contests: An Italian Case Study.” Renewable and Sustainable Energy Reviews 16: 2041–2052. doi:10.1016/j.rser.2012.01.032.
  • Chang, Y. 2010. “Optimal the Tilt Angles for Photovoltaic Modules in Taiwan.” Electrical Power and Energy Systems 32: 956–964. doi:10.1016/j.ijepes.2010.02.010.
  • Chepp, E. D., F. P. Gasparin, and A. Krenzinger. 2021. “Accuracy Investigation in the Modeling of Partially Shaded Photovoltaic Systems.” Solar Energy 223: 182–192. doi:10.1016/j.solener.2021.05.061.
  • Costanzo, V., R. Yao, E. Essah, L. Shao, M. Shahrestani, A. C. Oliveira, M. Araz, A. Hepbasli, and E. Biyik. 2018. “A Method of Strategic Evaluation of Energy Performance of Building Integrated Photovoltaic in the Urban Context.” Journal of Cleaner Production 184: 82–91. doi:10.1016/j.jclepro.2018.02.139.
  • Custódio, I., T. Quevedo, A. P. Melo, and R. Rüther. 2022. “A Holistic Approach for Assessing Architectural Integration Quality of Solar Photovoltaic Rooftops and Shading Devices.” Solar Energy 237: 432–446. doi:10.1016/j.solener.2022.02.019.
  • Dehwah, A. H. A., and M. Asif. 2019. “Assessment of Net Energy Contribution to Buildings by Rooftop Photovoltaic Systems in hot-Humid Climates.” Renewable Energy 131: 1288–1299. doi:10.1016/j.renene.2018.08.031.
  • Devetaković, M., D. Djordjević, M. Radojević, A. Krstić-Furundžić, B.-G. Burduhos, G. Martinopoulos, M. Neagoe, and G. Lobaccaro. 2020. “Photovoltaics on Landmark Buildings with Distinctive Geometries.” Applied Sciences 10: 6696. doi:10.3390/app10196696.
  • Dino, I. G. 2017. “Evolutionary Optimization of Building Envelope Design with Photovoltaics-Integrated Shading Devices.” LC3 2017: volume 1-proceedings of the joint conference on computing in construction (JC3) July 4−7, 2017, Heraklion, Greece, 457−464.
  • Dino, I. G. 2017. “The Performance Evaluation of Solar Control Methods in Buildings: A Multi-Objective Approach.” [In Turkish.] GU Journal of Science Part C 5 (3): 71–87.
  • Ekoe A Akata, A. M., D. Njomo, and B. Agrawal. 2017. “Assessment of Building Integrated Photovoltaic (BIPV) for Sustainable Energy Performance in Tropical Regions of Cameroon.” Renewable and Sustainable Energy Reviews 80: 1138–1152. doi:10.1016/j.rser.2017.05.155.
  • Elzeyadi, I. 2017. “The Impacts of Dynamic Façade Shading Typologies on Building Energy Performance and Occupant’s Multi-Comfort.” Architectural Science Review 60 (4): 316–324. doi:10.1080/00038628.2017.1337558.
  • Eranki, G. A., and M. Mani. 2020. “Integrability Assessment Methodology for Building Integrated Photovoltaics: Concept and Application.” International Journal of Sustainable Energy 39 (4): 362–379. doi:10.1080/14786451.2019.1699559.
  • Fouad, M. M., A. G. ElSayed, L. A. Shihata, H. A. Kandil, and E. I. Morgan. 2019. “Life Cycle Assessment for Photovoltaic Integrated Shading System with Different End of Life Phases.” International Journal of Sustainable Energy 38 (9): 821–830. doi:10.1080/14786451.2019.1588272.
  • Fouad, M. M., A. H. Mohamed, and L. A. Shihata. 2018. “Modeling and Analysis of Building Attached Photovoltaic Integrated Shading Systems (BAPVIS) Aiming for Zero Energy Buildings in hot Regions.” Journal of Building Engineering 21: 18–27. doi:10.1016/j.jobe.2018.09.017.
  • Frankl, P., A. Masini, M. Gamberale, and D. Toccaceli. 1998. “Simplified Life-Cycle Analysis of PV Systems in Buildings—Present Situation and Future Trends.” Progress in Photovoltaics: Research and Applications 6 (2): 137–146. doi:10.1002/(SICI)1099-159X(199803/04)6:2<137::AID-PIP208>3.0.CO;2-N.
  • Frydrychowicz–Jastrzębska, G., and A. Bugała. 2016. “CIS, CIGS and CIBS Thin Film Solar Cells and Possibilities of Their Application in BIPV.” Computer Applications in Electrical Engineering 14: 364–377. doi:10.21008/j.1508-4248.2016.0031.
  • González-Peña, D., I. García-Ruiz, M. Díez-Mediavilla, M. I. Dieste-Velasco, and C. Alonso-Tristán. 2021. “Photovoltaic Prediction Software: Evaluation with Real Data from Northern Spain.” Applied Sciences 11: 5025. doi:10.3390/app11115025.
  • Grobman, Y. J., I. G. Capeluto, and G. Austern. 2016. “External Shading in Buildings: Comparative Analysis of Daylighting Performance in Static and Kinetic Operation Scenarios.” Architectural Science Review 60 (2): 126–136. doi:10.1080/00038628.2016.1266991.
  • Hagemann, I. B. 2004. “Examples of Successful Architectural Integration of PV: Germany.” Progress in Photovoltaics: Research and Applications 12: 461–470. doi:10.1002/pip.561.
  • Huang, Y., J. Niu, and T. Chung. 2011. “Energy and Carbon Emission Payback Analysis for Energy-Efficient Retrofitting in Buildings—Overhang Shading Option.” Energy and Buildings 44: 94–103. doi:10.1016/j.enbuild.2011.10.027.
  • Hwang, T., S. Kang, and J. T. Kim. 2011. “Optimization of the Building Integrated Photovoltaic System in Office Buildings-Focus on the Orientation, Inclined Angle and Installed Area.” Energy and Buildings 46: 92–104. doi:10.1016/j.enbuild.2011.10.041.
  • IBB (İstanbul Metropolitan Municipality). 2007. Istanbul Building Bylaws:1512. [In Turkish.] İstanbul: İstanbul Metropolitan Municipality.
  • IEA. 2006. Compared Assessment of Selected Environmental Indicators of Photovoltaic Electricity in OECD Cities, Report IEA-PVPS T10-01:2006, International Energy Agency, Photovoltaic power systems programme.
  • IEA. 2020. Task 12 PV Sustainability – Methodology Guidelines on Life Cycle Assessment of Photovoltaic, Report IEA-PVPS T12-18:2020, International Energy Agency, Photovoltaic Power Systems Programme, 4th edition.
  • Jayathissa, P., M. Luzzatto, J. Schmidli, J. Hofer, Z. Nagy, and A. Schlueter. 2017. “Optimising Building Net Energy Demand with Dynamic BIPV Shading.” Applied Energy 202: 726–735. doi:10.1016/j.apenergy.2017.05.083.
  • Jung, S. K. 2014. “Optimal Control Methods for PV-Integrated Shading Devices.” PhD diss., University of Michigan.
  • Kalogirou, S. A., R. Agathokleous, and G. Panayiotou. 2013. “On-site PV Characterization and the Effect of Soiling on Their Performance.” Energy 51: 439–446. doi:10.1016/j.energy.2012.12.018.
  • Kim, J., S. K. Jung, Y. S. Choi, and J. T. Kim. 2010. “Optimization of Photovoltaic Integrated Shading Devices.” Indoor and Built Environment 19 (1): 114–122. doi:10.1177/1420326X09358139.
  • Kisa Ovali, P. 2009. “Forming Ecological Design Criteria Systematics in Terms of Climate Regions in Turkey: Kayaköy Settlement Sample.” [In Turkish.] PhD diss., Trakya University.
  • Knapp, K., and T. Jester. 2001. “Empirical Investigation of the Energy Payback Time for Photovoltaic Modules.” Solar Energy 71 (3): 165–172. doi:10.1016/S0038-092X(01)00033-0.
  • Lovati, M., G. Salvalai, G. Fratus, L. Maturi, R. Albatici, and D. Moser. 2019. “New Method for the Early Design of BIPV with Electric Storage: A Case Study in Northern Italy.” Sustainable Cities and Society 48: 101400. doi:10.1016/j.scs.2018.12.028.
  • Maghrabie, H. M., M. A. Abdelkareem, A. H. Al-Alami, M. Ramadan, E. Mushtaha, T. Wilberforce, and A. G. Olabi. 2021. “State-of-the-Art Technologies for Building-Integrated Photovoltaic Systems.” Buildings 11: 383. doi:10.3390/buildings11090383.
  • Malvoni, M., A. Leggieri, G. Maggiotto, P. M. Congedo, and M. G. De Giorgi. 2017. “Long Term Performance, Losses and Efficiency Analysis of a 960 kWP Photovoltaic System in the Mediterranean Climate.” Energy Conversion and Management 145: 169–181. doi:10.1016/j.enconman.2017.04.075.
  • Mandalaki, M., T. Tsoutsos, and N. Papamanolis. 2014. “Integrated PV in Shading Systems for Mediterranean Countries: Balance Between Energy Production and Visual Comfort.” Energy and Buildings 77: 445–456. doi:10.1016/j.enbuild.2014.03.046.
  • Mandalaki, M., K. Zervas, T. Tsoutsos, and A. Vazakas. 2012. “Assessment of Fixed Shading Devices with Integrated PV for Efficient Energy Use.” Solar Energy 86: 2561–2575. doi:10.1016/j.solener.2012.05.026.
  • Martinopoulos, G., A. Serasidou, P. Antoniadou, and A. M. Papadopoulos. 2018. “Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings.” Sustainability 10: 4670. doi:10.3390/su10124670.
  • Mehleri, E. D., P. L. Zervas, H. Sarimveis, J. A. Palyvos, and N. C. Markatos. 2010. “Determination of the Optimal Tilt Angle and Orientation for Solar Photovoltaic Arrays.” Renewable Energy 35: 2468–2475. doi:10.1016/j.renene.2010.03.006.
  • Mermoud, A., and T. Lejeune. 2010. “Performance Assessment of a Simulation Model for PV Modules of Any Available Technology.” 25th European photovoltaic solar energy conference, 6-10 September, Valencia, Spain.
  • Moral Uğur, E. 2006. “A Study About the Integration of Photovoltaics with Building Envelope System Elements.” [In Turkish.] Master's thesis, ITU Graduate School Of Science, Engineering and Technology, İstanbul.
  • Nawaz, I., and G. N. Tiwari. 2006. “Embodied Energy Analysis of Photovoltaic (PV) System Based on Macro- and Micro-Level.” Energy Policy 34: 3144–3152. doi:10.1016/j.enpol.2005.06.018.
  • Nicolás-Martín, C., P. Eleftheriadis, and D. Santos-Martín. 2020. “Validation and Self-Shading Enhancement for SoL: A Photovoltaic Estimation Model.” Solar Energy 202: 386–408. doi:10.1016/j.solener.2020.03.099.
  • Olgyay, V. 1963. Design with Climates. Princeton, NJ: Princeton University Press.
  • Özkiliç Keleş, C. 2008. “A Study About Photovoltaic Systems in Point of Energy Efficiency on the Buildings in Turkey.” [In Turkish.] Master's thesis, ITU Graduate School of Science, Engineering and Technology, İstanbul.
  • Pabasara, W. M., U. Wijeratne, R. J. Yang, E. Too, and R. Wakefield. 2019. “Design and Development of Distributed Solar PV Systems: Do the Current Tools Work?” Sustainable Cities and Society 45: 553–578. doi:10.1016/j.scs.2018.11.035.
  • Panteli, C., A. Kylili, L. Stasiuliene, L. Seduikyte, and P. A. Fokaides. 2018. “A Framework for Building Overhang Design Using Building Information Modeling and Life Cycle Assessment.” Journal of Building Engineering 20: 248–255. doi:10.1016/j.jobe.2018.07.022.
  • Peng, C., L. Huang, J. Liu, and Y. Huang. 2015. “Design and Practical Application of an Innovative Net-Zero Energy House with Integrated Photovoltaics: A Case Study from Solar Decathlon China 2013.” Architectural Science Review 58 (2): 144–161. doi:10.1080/00038628.2015.1011075.
  • Peng, C., Y. Huang, and Z. Wu. 2011. “Building-Integrated Photovoltaics (BIPV) in Architectural Design in China.” Energy and Buildings 43: 3592–3598. doi:10.1016/j.enbuild.2011.09.032.
  • pv Europe. 2016. “AVANCIS Launches New CIS Module SKALA for Solar Façades – Scalable in Size and Color.” Accessed February 17, 2021. https://www.pveurope.eu/solar-modules/avancis-launches-new-cis-module-skala-solar-facades-scalable-size-and-color.
  • PVsyst. 2021. SUPPORT (Help). Accessed February 17, 2021. https://www.pvsyst.com/support/.
  • Raf. 2021. İltay Enerji – Würth Solar CIS Thin Film Photovoltaic Panels [In Turkish.] Accessed February 16, 2021. https://www.raf.com.tr/urun/iltay-enerji-wurth-solar-cis-ince-film-fotovoltaik-paneller/2813.
  • Ramanan, P., K. Kalidasa Murugavel, and A. Karthick. 2019. “Performance Analysis and Energy Metrics of Grid-Connected Photovoltaic Systems.” Energy for Sustainable Development 52: 104–115. doi:10.1016/j.esd.2019.08.001.
  • Raugei, M., S. Bargigli, and S. Ulgiati. 2007. “Life Cycle Assessment and Energy pay-Back Time of Advanced Photovoltaic Modules: CdTe and CIS Compared to Poly-Si.” Energy 32: 1310–1318. doi:10.1016/j.energy.2006.10.003.
  • Reich, N. H., B. Mueller, A. Armbruster, W. G. J. H. M. Van Sark, K. Kiefer, and C. Reise. 2012. “Performance Ratio Revisited: Is PR > 90% Realistic?” Progress In Photovoltaics: Research And Applications 20: 717–726. doi:10.1002/pip.1219.
  • Republic of Turkey Ministry of Energy and Natural Resources. 2023. General Directorate of Energy Affairs GEPA (potential atlas of solar energy). Accessed February 7, 2023. https://gepa.enerji.gov.tr/MyCalculator/.
  • Shukla, A. K., K. Sudhakar, and P. Baredar. 2016. “A Comprehensive Review on Design of Building Integrated Photovoltaic System.” Energy and Buildings 128: 99–110. doi:10.1016/j.enbuild.2016.06.077.
  • Solar Frontier. 2021. What is CIS?. Accessed February 16, 2021. https://www.solar-frontier.eu/en/cis-technology/what-is-cis/.
  • Stamatakis, A., M. Mandalaki, and T. Tsoutsos. 2016. “Multi-Criteria Analysis for PV Integrated in Shading Devices for Mediterranean Region.” Energy and Buildings 117: 128–137. doi:10.1016/j.enbuild.2016.02.007.
  • Sun, L., L. Lu, and H. Yang. 2012. “Optimum Design of Shading-Type Building-Integrated Photovoltaic Claddings with Different Surface Azimuth Angles.” Applied Energy 90: 233–240. doi:10.1016/j.apenergy.2011.01.062.
  • Sun, L. L., and H. X. Yang. 2009. “Impacts of the Shading-Type Building-Integrated Photovoltaic Claddings on Electricity Generation and Cooling Load Component through Shaded Windows.” Energy and Buildings 42: 455–460. doi:10.1016/j.enbuild.2009.10.014.
  • Taveres-Cachat, E., G. Lobaccaro, F. Goia, and G. Chaudhary. 2019. “A Methodology to Improve the Performance of PV Integrated Shading Devices Using Multi-Objective Optimization.” Applied Energy 247: 731–744. doi:10.1016/j.apenergy.2019.04.033.
  • Touma, A. A., and D. Ouahrani. 2018. “The Selection of Brise Soleil Shading Optical Properties for Energy Conservation and Glare Removal: A Case Study in Qatar.” Journal of Building Engineering 20: 510–519. doi:10.1016/j.jobe.2018.08.020.
  • TSI (Turkish Standards Institution). 2008. TS 825: Thermal Insulation Requirements for Buildings (amendment of 2009 revision). [In Turkish.] Ankara: Turkish Standards Institution.
  • Turhan, S., and I. Çetiner. 2012. “Performance Evaluation in Photovoltaic Systems.” [In Turkish.] Paper presented at the 6th national roof and facade symposium Bursa, April 12–13.
  • Turkish State Meteorological Service. 2019. Official Statistics. Accessed May 5, 2019. https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A.
  • Vassiliades, C., A. Michael, A. Savvides, and S. Kalogirou. 2018. “Improvement of Passive Behaviour of Existing Buildings Through the Integration of Active Solar Energy Systems.” Energy 163: 1178–1192. doi:10.1016/j.energy.2018.08.148.
  • Viduruwan, G., and D. K. A. Induranga. 2021. “Validation of Meteonorm 8 for Energy Estimation of Solar Power Plants in Sri Lanka, Using PVsyst Software.” 3rd International conference on electrical engineering, 24 September, Colombo, Sri Lanka.
  • Vincenzo, M. C., D. Kesten, and D. Infield. 2012. “Assessment of PV Shading Device on Building Energy Consumption Taking into Account Site Layout.” Journal of Energy and Power Engineering 6: 346–352.
  • Wang, D., and Y. Chang. 2010. “Optimization of Tilt Angle for Photovoltaic Modules Based on the Neural-Genetic Algorithm.” Journal of Nan Kai 7 (1): 57–70.
  • Wittkopf, S., S. Valliappan, L. Liu, K. S. Ang, and S. C. J. Cheng. 2012. “Analytical Performance Monitoring of a 142.5 kWp Grid-Connected Rooftop BIPV System in Singapore.” Renewable Energy 47: 9–20. doi:10.1016/j.renene.2012.03.034.
  • Wittmer, B., A. Mermoud, and T. Schott. 2015. “Analysis of PV Grid Installations Performance, Comparing Measured Data to Simulation Results to Identify Problems in Operation and Monitoring.” 31st European photovoltaic solar energy conference, 14–18 September, Hamburg, Germany.
  • Yanardağ, H. M. 2015. “Evaluation of Energy and Cost Performance of PV Systems on Different Building Forms.” [In Turkish.] Master's thesis, ITU Graduate School Of Science, Engineering And Technology, İstanbul.
  • Yaşa, E. 2013. “Evaluation of Effect of Building Form for Different Climate Regions on Micro Climatic Comfort in Terms of Thermal Performance.” [In Turkish.] Paper presented at the environmental design congress Bursa, December 12–13.
  • Yoo, S., and E. Lee. 2002. “Efficiency Characteristic of Building Integrated Photovoltaics as a Shading Device.” Building and Environment 37: 615–623. doi:10.1016/S0360-1323(01)00071-3.
  • Yoo, S., E. Lee, and J. Lee. 1998. “Building Integrated Photovoltaics: A Korean Case Study.” Solar Energy 64 (4-6): 151–161. doi:10.1016/S0038-092X(98)00115-7.
  • Zhang, X., S.-K. Lau, S. S. Y. Lau, and Y. Zhao. 2018. “Photovoltaic Integrated Shading Devices (PVSDs): A Review.” Solar Energy 170: 947–968. doi:10.1016/j.solener.2018.05.067.
  • Zorer Gedik, G. 2001. “The Design of Shading Devices in Relation to the Window Orientations.” Paper presented at the livable environments and architecture international congress, Trabzon, July 4–7.
  • Zorer Gedik, G. 2002. “An Approach to Designing an Optimal Shading Device.” Architectural Science Review 45 (4): 285–293. doi:10.1080/00038628.2002.9696942.