192
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization and optimization of ultrasound assisted oxidative desulfurization of a model fuel using a novel magnetic deep eutectic solvent

, ORCID Icon &
Article: 2321625 | Received 22 Jul 2023, Accepted 14 Feb 2024, Published online: 20 May 2024

References

  • Asghar, A., A. A. Abdul Raman, and W. M. A. W. Daud. 2014. “A Comparison of Central Composite Design and Taguchi Method for Optimizing Fenton Process.” The Scientific World Journal 2014: 14. Article ID: 869120. https://doi.org/10.1155/2014/869120.
  • Babaee, S., and A. Daneshfar. 2018. “Magnetic Deep Eutectic Solvent-Based Ultrasound-Assisted Liquid–Liquid Microextraction for Determination of Hexanal and Heptanal in Edible Oils Followed by gas Chromatography–Flame Ionization Detection.” Analytical Methods 10 (34): 4162–4169. https://doi.org/10.1039/C8AY01058G.
  • Bäcker, T., O. Breunig, M. Valldor, K. Merz, V. Vasylyeva, and A.-V. Mudring. 2011. “In-Situ Crystal Growth and Properties of the Magnetic Ionic Liquid [C2mim][FeCl4].” Crystal Growth & Design 11 (6): 2564–2571. https://doi.org/10.1021/cg200326n.
  • Cooper, E. R., C. D. Andrews, P. S. Wheatley, P. B. Webb, P. Wormald, and R. E. Morris. 2004. “Ionic Liquids and Eutectic Mixtures as Solvent and Template in Synthesis of Zeolite Analogues.” Nature 430 (7003): 1012–1016. https://doi.org/10.1038/nature02860.
  • Elik, A., S. Fesliyan, N. Gürsoy, H. U. Haq, R. Castro-Muñoz, and N. Altunay. 2023. “An air-Assisted Dispersive Liquid Phase Microextraction Method Based on a Hydrophobic Magnetic Deep Eutectic Solvent for the Extraction and Preconcentration of Melamine from Milk and Milk-Based Products.” Food Chemistry 426: 136573.
  • Ferreira, E. S., I. V. Voroshylova, N. M. Figueiredo, C. M. Pereira, and M. N. D. Cordeiro. 2020. “Computational and Experimental Study of Propeline: A Choline Chloride Based Deep Eutectic Solvent.” Journal of Molecular Liquids 298: 111978. https://doi.org/10.1016/j.molliq.2019.111978.
  • Gano, Z. S., F. S. Mjalli, T. Al-Wahaibi, Y. Al-Wahaibi, and I. M. AlNashef. 2015. “Extractive Desulfurization of Liquid Fuel with FeCl3-Based Deep Eutectic Solvents: Experimental Design and Optimization by Central-Composite Design.” Chemical Engineering and Processing: Process Intensification 93: 10–20. https://doi.org/10.1016/j.cep.2015.04.001.
  • García-Saiz, A., I. de Pedro, O. Vallcorba, P. Migowski, I. Hernandez, L. F. Barquin, I. Abrahams, M. Motevalli, J. Dupont, and J. A. Gonzalez. 2015. “1-Ethyl-2,3-dimethylimidazolium Paramagnetic Ionic Liquids with 3D Magnetic Ordering in its Solid State: Synthesis, Structure and Magneto-Structural Correlations.” Rsc Advances 5 (75): 60835–60848. https://doi.org/10.1039/C5RA05723J.
  • Gaudino, E. C., D. Carnaroglio, L. Boffa, G. Cravotto, E. M. Moreira, M. A. Nunes, V. L. Dressler, and E. M. Flores. 2014. “Efficient H2O2/CH3COOH Oxidative Desulfurization/Denitrification of Liquid Fuels in Sonochemical Flow-Reactors.” Ultrasonics Sonochemistry 21 (1): 283–288. https://doi.org/10.1016/j.ultsonch.2013.04.009.
  • Gautam, R., N. Kumar, and J. G. Lynam. 2020. “Theoretical and Experimental Study of Choline Chloride-Carboxylic Acid Deep Eutectic Solvents and Their Hydrogen Bonds.” Journal of Molecular Structure 1222: 128849. https://doi.org/10.1016/j.molstruc.2020.128849.
  • Guo, W., Y. Hou, W. Wu, S. Ren, S. Tian, and K. N. Marsh. 2013. “Separation of Phenol from Model Oils with Quaternary Ammonium Saltsvia Forming Deep Eutectic Solvents.” Green Chemistry 15 (1): 226–229. https://doi.org/10.1039/C2GC36602A.
  • Hansmeier, A. R., G. W. Meindersma, and A. B. de Haan. 2011. “Desulfurization and Denitrogenation of Gasoline and Diesel Fuels by Means of Ionic Liquids.” Green Chemistry 13 (7): 1907–1913. https://doi.org/10.1039/c1gc15196g.
  • Hao, L., M. Wang, W. Shan, C. Deng, W. Ren, Z. Shi, and H. Lü. 2017. “L-proline-based Deep Eutectic Solvents (DESs) for Deep Catalytic Oxidative Desulfurization (ODS) of Diesel.” Journal of Hazardous Materials 339: 216–222. https://doi.org/10.1016/j.jhazmat.2017.06.050.
  • Ja’fari, M., S. L. Ebrahimi, and M. R. Khosravi-Nikou. 2018. “Ultrasound-assisted Oxidative Desulfurization and Denitrogenation of Liquid Hydrocarbon Fuels: A Critical Review.” Ultrasonics Sonochemistry 40: 955–968. https://doi.org/10.1016/j.ultsonch.2017.09.002.
  • Jensen, W. A. 2017. “Response Surface Methodology: Process and Product Optimization Using Designed Experiments 4th Edition.” Journal of Quality Technology 49 (2): 186. https://doi.org/10.1080/00224065.2017.11917988.
  • Jiang, W., H. Jia, H. Li, L. Zhu, R. Tao, W. Zhu, H. Li, and S. Dai. 2019. “Boric Acid-Based Ternary Deep Eutectic Solvent for Extraction and Oxidative Desulfurization of Diesel Fuel.” Green Chemistry 21 (11): 3074–3080. https://doi.org/10.1039/C9GC01004A.
  • Jiang, W., H. Li, C. Wang, W. Liu, T. Guo, H. Liu, W. Zhu, and H. Li. 2016. “Synthesis of Ionic-Liquid-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuel.” Energy & Fuels 30 (10): 8164–8170. https://doi.org/10.1021/acs.energyfuels.6b01976.
  • Jiang, B., H. Yang, L. Zhang, R. Zhang, Y. Sun, and Y. Huang. 2016. “Efficient Oxidative Desulfurization of Diesel Fuel Using Amide-Based Ionic Liquids.” Chemical Engineering Journal 283: 89–96. https://doi.org/10.1016/j.cej.2015.07.070.
  • Kang, S., G. Zhang, X. Yang, H. Yin, X. Fu, J. Liao, J. Tu, X. Huang, F. G. Qin, and Y. Xu. 2017. “Effects of p-Toluenesulfonic Acid in the Conversion of Glucose for Levulinic Acid and Sulfonated Carbon Production.” Energy & Fuels 31 (3): 2847–2854. https://doi.org/10.1021/acs.energyfuels.6b02675.
  • Karami, E., M. A. Sobati, B. Khodaei, and K. Abdi. 2017. “An Experimental Investigation on the Ultrasound-Assisted Oxidation of Benzothiophene in Model Fuel: Application of Response Surface Methodology.” Applied Thermal Engineering 118: 691–702. https://doi.org/10.1016/j.applthermaleng.2017.03.028.
  • Khezeli, T., and A. Daneshfar. 2017. “Synthesis and Application of Magnetic Deep Eutectic Solvents: Novel Solvents for Ultrasound Assisted Liquid-Liquid Microextraction of Thiophene.” Ultrasonics Sonochemistry 38: 590–597. https://doi.org/10.1016/j.ultsonch.2016.08.023.
  • Khodaei, B., M. A. Sobati, and S. Shahhosseini. 2016. “Optimization of Ultrasound-Assisted Oxidative Desulfurization of High Sulfur Kerosene Using Response Surface Methodology (RSM).” Clean Technologies and Environmental Policy 18 (8): 2677–2689. https://doi.org/10.1007/s10098-016-1186-z.
  • Khodaei, B., M. A. Sobati, and S. Shahhosseini. 2017. “Rapid Oxidation of Dibenzothiophene in Model Fuel Under Ultrasound Irradiation.” Monatshefte für Chemie - Chemical Monthly 148 (2): 387–396. https://doi.org/10.1007/s00706-016-1801-z.
  • Li, Z., D. Liu, Z. Men, L. Song, Y. Lv, P. Wu, B. Lou, Y. Zhang, N. Shi, and Q. Chen. 2018. “Insight Into Effective Denitrification and Desulfurization of Liquid Fuel with Deep Eutectic Solvents: An Innovative Evaluation Criterion to Filtrate Extractants Using the Compatibility Index.” Green Chemistry 20 (13): 3112–3120. https://doi.org/10.1039/C8GC00828K.
  • Li, C., J. Zhang, Z. Li, J. Yin, Y. Cui, Y. Liu, and G. Yang. 2016. “Extraction Desulfurization of Fuels with ‘Metal Ions’ Based Deep Eutectic Solvents (MDESs).” Green Chemistry 18 (13): 3789–3795. https://doi.org/10.1039/C6GC00366D.
  • Macaud, M., A. Milenkovic, E. Schulz, M. Lemaire, and M. Vrinat. 2000. “Hydrodesulfurization of Alkyldibenzothiophenes: Evidence of Highly Unreactive Aromatic Sulfur Compounds.” Journal of Catalysis 193 (2): 255–263. https://doi.org/10.1006/jcat.2000.2897.
  • Mafi, M., M. R. Dehghani, and B. Mokhtarani. 2018. “Liquid-liquid Equilibrium Data for Extractive Desulfurization Using 1-Butyl-3-Methyl Imidazolium Thiocyanate, n- Alkane and Thiophene.” Fluid Phase Equilibria 456: 109–115. https://doi.org/10.1016/j.fluid.2017.10.017.
  • Mahmoudi, V., A. M. Kermani, M. Ghahramaninezhad, and A. Ahmadpour. 2021. “Oxidative Desulfurization of Dibenzothiophene by Magnetically Recoverable Polyoxometalate-Based Nanocatalyst: Optimization by Response Surface Methodology.” Molecular Catalysis 509: 111611. https://doi.org/10.1016/j.mcat.2021.111611.
  • Makoś-Chełstowska, P., M. Kaykhaii, J. Płotka-Wasylka, and M. de la Guardia. 2022. “Magnetic Deep Eutectic Solvents – Fundamentals and Applications.” Journal of Molecular Liquids 365: 120158. https://doi.org/10.1016/j.molliq.2022.120158.
  • Mofidi, M., and S. Shahhosseini. 2022. “Ultrasound Assisted Oxidative Desulfurization of a Model Fuel Using a Deep Eutectic Solvent: Optimization and Experimental Design.” Chemical Engineering and Processing - Process Intensification 171: 108724. https://doi.org/10.1016/j.cep.2021.108724.
  • Oliveira, F. S., A. B. Pereiro, L. P. Rebelo, and I. M. Marrucho. 2013. “Deep Eutectic Solvents as Extraction Media for Azeotropic Mixtures.” Green Chemistry 15 (5): 1326–1330. https://doi.org/10.1039/c3gc37030e.
  • Pätzold, M., S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, and D. Holtmann. 2019. “Deep Eutectic Solvents as Efficient Solvents in Biocatalysis.” Trends in Biotechnology 37 (9): 943–959. https://doi.org/10.1016/j.tibtech.2019.03.007.
  • Pejov, L., M. Ristova, and B. Šoptrajanov. 2011. “Quantum Chemical Study of p-Toluenesulfonic Acid, p-Toluenesulfonate Anion and the Water–p-Toluenesulfonic Acid Complex. Comparison with Experimental Spectroscopic Data.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79 (1): 27–34. https://doi.org/10.1016/j.saa.2011.01.007.
  • Peng, F., X. Wang, W. Tao, Y. Chen, Y. Ma, and X. Ding. 2022. “Development of Magnetic Deep Eutectic Solvent-Based Liquid–Liquid Extraction for the Selective Extraction and Separation of RNA.” Langmuir 38 (36): 10934–10942. https://doi.org/10.1021/acs.langmuir.2c00882.
  • Rezaee, M., F. Feyzi, and M. R. Dehghani. 2021. “Extractive Desulfurization of Dibenzothiophene from Normal Octane Using Deep Eutectic Solvents as Extracting Agent.” Journal of Molecular Liquids 333: 115991. https://doi.org/10.1016/j.molliq.2021.115991.
  • Rodriguez Rodriguez, N., L. Machiels, and K. Binnemans. 2019. “p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Solubilizing Metal Oxides.” ACS Sustainable Chemistry & Engineering 7 (4): 3940–3948. https://doi.org/10.1021/acssuschemeng.8b05072.
  • Saaedi, M., M. Mehrpooya, A. Shabani, and S. Moosavian. 2022. “Design and Economic Analysis of Heat Exchangers Used in Solar Cogeneration Systems Based on Nanoworking Fluid.” Chemical Papers 76 (12): 7475–7492. https://doi.org/10.1007/s11696-022-02427-2.
  • Saedi, M., M. Mehrpooya, A. Shabani, A. Zaitsev, and A. Nikitin. 2022. “Proposal and Investigation of a Novel Process Configuration for Production of Neon from Cryogenic air Separation Unit.” Sustainable Energy Technologies and Assessments 50: 101875. https://doi.org/10.1016/j.seta.2021.101875.
  • Shi, R., F. Zhou, Y. Chen, Z. Liu, S. Liu, and T. Mu. 2022. “Magnetic Deep Eutectic Solvents: Formation and Properties.” Physical Chemistry Chemical Physics 24 (34): 20073–20081. https://doi.org/10.1039/D2CP01592G.
  • Shu, C., and T. Sun. 2016. “Extractive Desulfurisation of Gasoline with Tetrabutyl Ammonium Chloride-Based Deep Eutectic Solvents.” Separation Science and Technology 51 (8): 1336–1343. https://doi.org/10.1080/01496395.2016.1155602.
  • Smith, E. L., A. P. Abbott, and K. S. Ryder. 2014. “Deep Eutectic Solvents (DESs) and Their Applications.” Chemical Reviews 114 (21): 11060–11082. https://doi.org/10.1021/cr300162p.
  • Sobati, M. A., A. M. Dehkordi, and M. Shahrokhi. 2010. “Extraction of Oxidized Sulfur-Containing Compounds of non-Hydrotreated Gas Oil.” Chemical Engineering & Technology 33 (9): 1515–1524. https://doi.org/10.1002/ceat.200900622.
  • Song, C. 2003. “An Overview of new Approaches to Deep Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and jet Fuel.” Catalysis Today 86 (1-4): 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7.
  • Song, C., and X. Ma. 2003. “New Design Approaches to Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization.” Applied Catalysis B: Environmental 41 (1-2): 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6.
  • Srivastava, V. C. 2012. “An Evaluation of Desulfurization Technologies for Sulfur Removal from Liquid Fuels.” RSC Advances 2 (3): 759–783. https://doi.org/10.1039/C1RA00309G.
  • Stepankova, V., P. Vanacek, J. Damborsky, and R. Chaloupkova. 2014. “Comparison of Catalysis by Haloalkane Dehalogenases in Aqueous Solutions of Deep Eutectic and Organic Solvents.” Green Chemistry 16 (5): 2754–2761. https://doi.org/10.1039/C4GC00117F.
  • Tang, X. D., Y. F. Zhang, J. J. Li, Y. Q. Zhu, D. Y. Qing, and Y. X. Deng. 2015. “Deep Extractive Desulfurization with Arenium ion Deep Eutectic Solvents.” Industrial & Engineering Chemistry Research 54 (16): 4625–4632.
  • Tiecco, M., F. Cappellini, F. Nicoletti, T. Del Giacco, R. Germani, and P. Di Profio. 2019. “Role of the Hydrogen Bond Donor Component for a Proper Development of Novel Hydrophobic Deep Eutectic Solvents.” Journal of Molecular Liquids 281: 423–430. https://doi.org/10.1016/j.molliq.2019.02.107.
  • Wang, X., W. Jiang, W. Zhu, H. Li, S. Yin, Y. Chang, and H. Li. 2016. “A Simple and Cost-Effective Extractive Desulfurization Process with Novel Deep Eutectic Solvents.” Rsc Advances 6 (36): 30345–30352. https://doi.org/10.1039/C5RA27266A.
  • Xu, H., D. Zhang, F. Wu, X. Wei, and J. Zhang. 2018. “Deep Desulfurization of Fuels with Cobalt Chloride-Choline Chloride/Polyethylene Glycol Metal Deep Eutectic Solvents.” Fuel 225: 104–110. https://doi.org/10.1016/j.fuel.2018.03.159.
  • Yan, X., S. Anguille, M. Bendahan, and P. Moulin. 2019. “Ionic Liquids Combined with Membrane Separation Processes: A Review.” Separation and Purification Technology 222: 230–253. https://doi.org/10.1016/j.seppur.2019.03.103.
  • Yang, H., B. Jiang, Y. Sun, L. Hao, Z. Huang, and L. Zhang. 2016. “Synthesis and Oxidative Desulfurization of Novel Lactam-Based Brønsted-Lewis Acidic Ionic Liquids.” Chemical Engineering Journal 306: 131–138. https://doi.org/10.1016/j.cej.2016.07.044.
  • Yin, J., J. Wang, Z. Li, D. Li, G. Yang, Y. Cui, A. Wang, and C. Li. 2015. “Deep Desulfurization of Fuels Based on an Oxidation/Extraction Process with Acidic Deep Eutectic Solvents.” Green Chemistry 17 (9): 4552–4559. https://doi.org/10.1039/C5GC00709G.
  • Yucui, H., Y. Congfei, and W. Weize. 2018. “Deep Eutectic Solvents: Green Solvents for Separation Applications.” Acta Physico-Chimica Sinica 34 (8): 873–885. https://doi.org/10.3866/PKU.WHXB201802062.
  • Zaidi, W., A. L. Boisset, J. Jacquemin, L. Timperman, and M. R. M. Anouti. 2014. “Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors.” The Journal of Physical Chemistry C 118 (8): 4033–4042. https://doi.org/10.1021/jp412552v.
  • Zhang, Y., F. Lü, X. Cao, and J. Zhao. 2014. “Deep Eutectic Solvent Supported TEMPO for Oxidation of Alcohols.” RSC Advances 4 (76): 40161–40169. https://doi.org/10.1039/C4RA05598E.
  • Zhang, Q., K. D. O. Vigier, S. Royer, and F. Jérôme. 2012. “Deep Eutectic Solvents: Syntheses, Properties and Applications.” Chemical Society Reviews 41 (21): 7108–7146. https://doi.org/10.1039/c2cs35178a.
  • Zhu, S., H. Li, W. Zhu, W. Jiang, C. Wang, P. Wu, Q. Zhang, and H. Li. 2016. “Vibrational Analysis and Formation Mechanism of Typical Deep Eutectic Solvents: An Experimental and Theoretical Study.” Journal of Molecular Graphics and Modelling 68: 158–175. https://doi.org/10.1016/j.jmgm.2016.05.003.