7
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Flux profile optimisation of a high-flux solar simulator using the trust-region reflective method

& ORCID Icon
Article: 2355651 | Received 14 Feb 2024, Accepted 07 May 2024, Published online: 18 Jul 2024

References

  • Abuseada, M., C. Ophoff, and N. Ozalp. 2019. “Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique.” Journal of Solar Energy Engineering 141 (2): 021005. https://doi.org/10.1115/1.4042246.
  • Ahmad, S. Q. S., R. J. Hand, and C. Wieckert. 2014. “Use of Concentrated Radiation for Solar Powered Glass Melting Experiments.” Solar Energy 109: 174–182. https://doi.org/10.1016/j.solener.2014.08.007.
  • Bader, R., S. Haussener, and W. Lipiński. 2015. “Optical Design of Multisource High-Flux Solar Simulators.” Journal of Solar Energy Engineering 137 (2): 021012. https://doi.org/10.1115/1.4028702.
  • Biswas, D., T. Cox, and J. L. Lapp. 2022. “Sintering Behavior of Lunar Soil Heated by Indirect and Direct Concentrated Sunlight” In ASME 2022 16th International Conference on Energy Sustainability, American Society of Mechanical Engineers. https://doi.org/10.1115/ES2022-81630.
  • Codd, D. S., A. Carlson, J. Rees, and A. H. Slocum. 2010. “A low Cost High Flux Solar Simulator.” Solar Energy 84 (12): 2202–2212. https://doi.org/10.1016/j.solener.2010.08.007.
  • Conn, A. R., N. I. M. Gould, and P. L. Toint. 2000. Trust Region Methods. Society for Industrial and Applied Mathematics.
  • Dai, S., Z. Chang, T. Ma, L. Wang, and X. Li. 2019. “Experimental Study on Flux Mapping for a Novel 84 kWe High Flux Solar Simulator.” Applied Thermal Engineering 162: 114319. https://doi.org/10.1016/j.applthermaleng.2019.114319.
  • Dong, X., G. J. Nathan, Z. Sun, D. Gu, and P. J. Ashman. 2015a. “Concentric Multilayer Model of the arc in High Intensity Discharge Lamps for Solar Simulators with Experimental Validation.” Solar Energy 122: 293–306. https://doi.org/10.1016/j.solener.2015.09.004.
  • Dong, X., Z. Sun, G. J. Nathan, P. J. Ashman, and D. Gu. 2015b. “Time-resolved Spectra of Solar Simulators Employing Metal Halide and Xenon arc Lamps.” Solar Energy 115: 613–620. https://doi.org/10.1016/j.solener.2015.03.017.
  • Ekman, B. M., G. Brooks, and M. Akbar Rhamdhani. 2015. “Development of High Flux Solar Simulators for Solar Thermal Research.” Solar Energy Materials and Solar Cells 141: 436–446. https://doi.org/10.1016/j.solmat.2015.06.016.
  • Emery, K., D. Myers, and S. Rummel. 1988. “Solar simulation-problems and solutions,” in Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, IEEE, pp. 1087–1091. https://doi.org/10.1109/PVSC.1988.105873.
  • Gallo, A., A. Marzo, E. Fuentealba, and E. Alonso. 2017. “High Flux Solar Simulators for Concentrated Solar Thermal Research: A Review.” Renewable and Sustainable Energy Reviews 77: 1385–1402. https://doi.org/10.1016/j.rser.2017.01.056.
  • Garrido, J., L. Aichmayer, W. Wang, and B. Laumert. 2017. “Characterization of the KTH High-Flux Solar Simulator Combining Three Measurement Methods.” Energy 141: 2091–2099. https://doi.org/10.1016/j.energy.2017.11.067.
  • Gill, R., E. Bush, P. Haueter, and P. Loutzenhiser. 2015. “Characterization of a 6 kW High-Flux Solar Simulator with an Array of Xenon arc Lamps Capable of Concentrations of Nearly 5000 Suns.” Review of Scientific Instruments 86 (12): 125107. https://doi.org/10.1063/1.4936976.
  • Hathaway, B. J., and J. H. Davidson. 2017. “Demonstration of a Prototype Molten Salt Solar Gasification Reactor.” Solar Energy 142: 224–230. https://doi.org/10.1016/j.solener.2016.12.032.
  • Hirsch, D., P. v. Zedtwitz, T. Osinga, J. Kinamore, and A. Steinfeld. 2003. “A New 75 kW High-Flux Solar Simulator for High-Temperature Thermal and Thermochemical Research.” Journal of Solar Energy Engineering 125 (1): 117–120. https://doi.org/10.1115/1.1528922.
  • Hossein, M. H. 2019. “Variable Flux Profile Optimization of a High Flux Solar Simulator,” M.S., University of Maine, Orono. Accessed August 21, 2023. https://digitalcommons.library.umaine.edu/etd/3807.
  • Janata, E. 2002. “A Pulse Generator for Xenon Lamps.” Radiation Physics and Chemistry 65 (3): 255–258. https://doi.org/10.1016/S0969-806X(02)00261-X.
  • Jiang, B., B. Guene Lougou, H. Zhang, W. Wang, D. Han, and Y. Shuai. 2020. “Analysis of High-Flux Solar Irradiation Distribution Characteristic for Solar Thermochemical Energy Storage Application.” Applied Thermal Engineering 181: 115900. https://doi.org/10.1016/j.applthermaleng.2020.115900.
  • Jin, J., Y. Hao, and H. Jin. 2019. “A Universal Solar Simulator for Focused and Quasi-Collimated Beams.” Applied Energy 235: 1266–1276. https://doi.org/10.1016/j.apenergy.2018.09.223.
  • Krueger, K. R., J. H. Davidson, and W. Lipiński. 2011. “Design of a New 45 kWe High-Flux Solar Simulator for High-Temperature Solar Thermal and Thermochemical Research.” Journal of Solar Energy Engineering 133 (1): 011013. https://doi.org/10.1115/1.4003298.
  • Krueger, K. R., W. Lipiński, and J. H. Davidson. 2013. “Operational Performance of the University of Minnesota 45 kWe High-Flux Solar Simulator.” Journal of Solar Energy Engineering 135 (4): 044501. https://doi.org/10.1115/1.4023595.
  • Lapp, J. L., M. Lange, R. Rieping, L. de Oliveira, M. Roeb, and C. Sattler. 2017. “Fabrication and Testing of CONTISOL: A new Receiver-Reactor for day and Night Solar Thermochemistry.” Applied Thermal Engineering 127: 46–57. https://doi.org/10.1016/j.applthermaleng.2017.08.001.
  • Lei, F., P. Dupuis, O. Durrieu, G. Zissis, and P. Maussion. 2017. “Acoustic Resonance Detection Using Statistical Methods of Voltage Envelope Characterization in Metal Halide Lamps.” IEEE Transactions on Industry Applications 53 (6): 5988–5996. https://doi.org/10.1109/TIA.2017.2742978.
  • Li, X., J. Chen, W. Lipiński, Y. Dai, and C.-H. Wang. 2020. “A 28 kWe Multi-Source High-Flux Solar Simulator: Design, Characterization, and Modeling.” Solar Energy 211: 569–583. https://doi.org/10.1016/j.solener.2020.09.089.
  • Li, J., J. Gonzalez-Aguilar, C. Pérez-Rábago, H. Zeaiter, and M. Romero. 2014. “Optical Analysis of a Hexagonal 42kWe High-Flux Solar Simulator.” Energy Procedia 57: 590–596. https://doi.org/10.1016/j.egypro.2014.10.213.
  • Li, J., J. Gonzalez-Aguilar, and M. Romero. 2015. “Line-concentrating Flux Analysis of 42kWe High-Flux Solar Simulator.” Energy Procedia 69: 132–137. https://doi.org/10.1016/j.egypro.2015.03.016.
  • Li, J., J. Hu, and M. Lin. 2022. “A Flexibly Controllable High-Flux Solar Simulator for Concentrated Solar Energy Research from Extreme Magnitudes to Uniform Distributions.” Renewable and Sustainable Energy Reviews 157: 112084. https://doi.org/10.1016/j.rser.2022.112084.
  • Li, L., B. Wang, R. Bader, J. Zapata, and W. Lipiński. 2019a. “Reflective Optics for Redirecting Convergent Radiative Beams in Concentrating Solar Applications.” Solar Energy 191: 707–718. https://doi.org/10.1016/j.solener.2019.08.077.
  • Li, L., B. Wang, J. Pottas, and W. Lipiński. 2019b. “Design of a Compound Parabolic Concentrator for a Multi-Source High-Flux Solar Simulator.” Solar Energy 183: 805–811. https://doi.org/10.1016/j.solener.2019.03.017.
  • Liu, L., G. Sun, G. Zhang, S. Liu, and J. Zhang. 2023. “Research Progress in High-Flux Solar Simulators.” Applied Thermal Engineering 224: 120107. https://doi.org/10.1016/j.applthermaleng.2023.120107.
  • Manzoor, M. T., L. Peinturier, and M. Tetreault-Friend. 2023. “Concrete Based Molten Salt Storage Tanks.” J Energy Storage 57: 106151. https://doi.org/10.1016/j.est.2022.106151.
  • Martínez-Manuel, L., et al. 2018. “A 17.5 KWel High Flux Solar Simulator with Controllable Flux-Spot Capabilities: Design and Validation Study.” Solar Energy 170: 807–819. https://doi.org/10.1016/j.solener.2018.05.088.
  • Melchior, T., C. Perkins, A. W. Weimer, and A. Steinfeld. 2008. “A Cavity-Receiver Containing a Tubular Absorber for High-Temperature Thermochemical Processing Using Concentrated Solar Energy.” International Journal of Thermal Sciences 47 (11): 1496–1503. https://doi.org/10.1016/j.ijthermalsci.2007.12.003.
  • Milanese, M., G. Colangelo, and A. de Risi. 2021. “Development of a High-Flux Solar Simulator for Experimental Testing of High-Temperature Applications.” Energies 14 (11): 3124. https://doi.org/10.3390/en14113124.
  • Petrasch, J., et al. 2007. “A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps.” Journal of Solar Energy Engineering 129 (4): 405–411. https://doi.org/10.1115/1.2769701.
  • Pottas, J., L. Li, M. Habib, C.-H. Wang, J. Coventry, and W. Lipiński. 2022. “Optical Alignment and Radiative Flux Characterization of a Multi-Source High-Flux Solar Simulator.” Solar Energy 236: 434–444. https://doi.org/10.1016/j.solener.2022.02.026.
  • Roba, J. P., and N. P. Siegel. 2017. “The Design of Metal Halide-Based High Flux Solar Simulators: Optical Model Development and Empirical Validation.” Solar Energy 157: 818–826. https://doi.org/10.1016/j.solener.2017.08.072.
  • Rowe, S. C., et al. 2017. “Experimental Evidence of an Observer Effect in High-Flux Solar Simulators.” Solar Energy 158: 889–897. https://doi.org/10.1016/j.solener.2017.09.040.
  • Rowe, S. C., et al. 2018. “Nowcasting, Predictive Control, and Feedback Control for Temperature Regulation in a Novel Hybrid Solar-Electric Reactor for Continuous Solar-Thermal Chemical Processing.” Solar Energy 174: 474–488. https://doi.org/10.1016/j.solener.2018.09.005.
  • Sarwar, J., G. Georgakis, R. LaChance, and N. Ozalp. 2014. “Description and Characterization of an Adjustable Flux Solar Simulator for Solar Thermal, Thermochemical and Photovoltaic Applications.” Solar Energy 100: 179–194. https://doi.org/10.1016/j.solener.2013.12.008.
  • Schrader, A. J., G. L. Schieber, A. Ambrosini, and P. G. Loutzenhiser. 2020. “Experimental Demonstration of a 5 KWth Granular-Flow Reactor for Solar Thermochemical Energy Storage with Aluminum-Doped Calcium Manganite Particles.” Applied Thermal Engineering 173: 115257. https://doi.org/10.1016/j.applthermaleng.2020.115257.
  • Schroeder, N., and K. Albrecht. 2021. “Assessment of Particle Candidates for Falling Particle Receiver Applications Through Irradiance and Thermal Cycling,” in ASME 2021 15th International Conference on Energy Sustainability, American Society of Mechanical Engineers. https://doi.org/10.1115/ES2021-62305
  • Song, J., et al. 2019. “Flexible High Flux Solar Simulator Based on Optical Fiber Bundles.” Solar Energy 193: 576–583. https://doi.org/10.1016/j.solener.2019.10.002.
  • Varón, L. M., B. Narváez-Romo, L. Costa-Sobral, G. Barreto, and J. R. Simões-Moreira. 2023. “Novel High-Flux Indoor Solar Simulator for High Temperature Thermal Processes.” Applied Thermal Engineering 234: 121188. https://doi.org/10.1016/j.applthermaleng.2023.121188.
  • Wang, W., L. Aichmayer, J. Garrido, and B. Laumert. 2017. “Development of a Fresnel Lens Based High-Flux Solar Simulator.” Solar Energy 144: 436–444. https://doi.org/10.1016/j.solener.2017.01.050.
  • Wang, W., L. Aichmayer, B. Laumert, and T. Fransson. 2014. “Design and Validation of a Low-Cost High-Flux Solar Simulator Using Fresnel Lens Concentrators.” Energy Procedia 49: 2221–2230. https://doi.org/10.1016/j.egypro.2014.03.235.
  • Wieghardt, K., et al. 2016. “SynLight – The World's Largest Artificial Sun.” AIP Conference Proceedings 1734, 030038.
  • Wu, W., L. Amsbeck, R. Buck, R. Uhlig, and R. Ritz-Paal. 2014. “Proof of Concept Test of a Centrifugal Particle Receiver.” Energy Procedia 49: 560–568. https://doi.org/10.1016/j.egypro.2014.03.060.
  • Xiao, G., K. Guo, M. Ni, Z. Luo, and K. Cen. 2014. “Optical and Thermal Performance of a High-Temperature Spiral Solar Particle Receiver.” Solar Energy 109: 200–213. https://doi.org/10.1016/j.solener.2014.08.037.
  • Xiao, J., X. Wei, R. N. Gilaber, Y. Zhang, and Z. Li. 2018. “Design and Characterization of a High-Flux non-Coaxial Concentrating Solar Simulator.” Applied Thermal Engineering 145: 201–211. https://doi.org/10.1016/j.applthermaleng.2018.09.050.
  • Zhu, Q., Y. Xuan, X. Liu, L. Yang, W. Lian, and J. Zhang. 2020. “A 130 kWe Solar Simulator with Tunable Ultra-High Flux and Characterization Using Direct Multiple Lamps Mapping.” Applied Energy 270: 115165. https://doi.org/10.1016/j.apenergy.2020.115165.