380
Views
14
CrossRef citations to date
0
Altmetric
Review

Single dose treatment of malaria - current status and perspectives

, &
Pages 669-678 | Received 05 Apr 2016, Accepted 18 May 2016, Published online: 07 Jun 2016

References

  • World Health Organisation. World malaria report 2015. Geneva, Switzerland: WHO; 2015.
  • Menéndez C, D’Alessandro U, Ter Kuile FO. Reducing the burden of malaria in pregnancy by preventive strategies. Lancet Infect Dis. 2007;7(2):126–135.
  • Agnandji ST, Fernandes JF, Bache EB, et al. Clinical development of RTS,S/AS malaria vaccine: a systematic review of clinical phase I-III trials. Future Microbiol. 2015;10(10):1553–1578.
  • World Health Organisation. Decision-making on malaria vaccine introduction: the role of cost–effectiveness analyses 2012 Available from: http://www.who.int/bulletin/volumes/90/11/12-107482/en/
  • Ashley EA, White NJ. Artemisinin-based combinations. Curr Opin Infect Dis. 2005;18(6):531–536.
  • Barnes KI, White NJ. Population biology and antimalarial resistance: the transmission of antimalarial drug resistance in plasmodium falciparum. Acta Trop. 2005;94(3):230–240.
  • Ramharter M, Kurth FM, Belard S, et al. Pharmacokinetics of two paediatric artesunate mefloquine drug formulations in the treatment of uncomplicated falciparum malaria in gabon. J Antimicrob Chemother. 2007;60(5):1091–1096.
  • World Health Organisation. Guidelines for the treatment of malaria. 3rd ed. Geneva: WHO; 2015.
  • Koram KA, Abuaku B, Duah N, et al. Comparative efficacy of antimalarial drugs including ACTs in the treatment of uncomplicated malaria among children under 5 years in Ghana. Acta Tropica. 2005;95(3):194–203.
  • Ramharter M, Kurth F, Schreier AC, et al. Fixed-dose pyronaridine-artesunate combination for treatment of uncomplicated falciparum malaria in pediatric patients in Gabon. J Infect Dis. 2008;198(6):911–919.
  • Galactionova K, Tediosi F, De Savigny D, et al. Effective coverage and systems effectiveness for malaria case management in sub-Saharan African countries. PLoS One. 2015;10(5):e0127818.
  • Vlassoff C, Tanner M. The relevance of rapid assessment to health research and interventions. Health Pol Plan. 1992;7:1–9.
  • The malERA Consultative Group on Health Systems and Operational Research. A research agenda for malaria eradication: health systems and operational research. PLoS Med. 2011;8(1):e1000397.
  • Webster J, Baiden F, Bawah J, et al. Management of febrile children under five years in hospitals and health centres of rural Ghana. Malar J. 2014;13:261.
  • Adegnika AA, Breitling LP, Agnandji ST, et al. Effectiveness of quinine monotherapy for the treatment of plasmodium falciparum infection in pregnant women in Lambarene, Gabon. Am J Trop Med Hyg. 2005;73(2):263–266.
  • Banek K, Lalani M, Staedke S, et al. Adherence to artemisinin-based combination therapy for the treatment of malaria: a systematic review of the evidence. Malar J. 2014;13:7.
  • Sondo P, Derra K, Diallo-Nakanabo S, et al. Effectiveness and safety of artemether-lumefantrine versus artesunate-amodiaquine for unsupervised treatment of uncomplicated falciparum malaria in patients of all age groups in Nanoro, Burkina Faso: a randomized open label trial. Malar J. 2015;14:325.
  • Agnandji ST, Kurth F, Fernandes JF, et al. The use of paediatric artemisinin combinations in sub-Saharan Africa: a snapshot questionnaire survey of health care personnel. Malar J. 2011;10:365.
  • Agnandji ST, Kurth F, Belard S, et al. Current status of the clinical development and implementation of paediatric artemisinin combination therapies in Sub-Saharan Africa. Wien Klin Wochenschr. 2011;123(Suppl 1):7–9.
  • Dondorp AM, Yeung S, White L, et al. Artemisinin resistance: current status and scenarios for containment. Nat Rev Micro. 2010;8(4):272–280.
  • Noedl H, Se Y, Schaecher K, et al. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359(24):2619–2620.
  • World Health Organisation. Global report on antimalarial drug efficacy and drug resistance: 2000–2010. Geneva: WHO; 2010.
  • Burrows JN, Van Huijsduijnen RH, Mohrle JJ, et al. Designing the next generation of medicines for malaria control and eradication. Malar J. 2013;12:187.
  • Vennerstrom JL, Arbe-Barnes S, Brun R, et al. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature. 2004;430(7002):896–900.
  • Kreidenweiss A, Mordmuller B, Krishna S, et al. Antimalarial activity of a synthetic endoperoxide (RBx-11160/OZ277) against plasmodium falciparum isolates from Gabon. Antimicrob Agents Chemother. 2006;50(4):1535–1537.
  • Valecha N, Looareesuwan S, Martensson A, et al. Arterolane, a new synthetic trioxolane for treatment of uncomplicated plasmodium falciparum malaria: a phase II, multicenter, randomized, dose-finding clinical trial. Clin Infect Dis. 2010;51(6):684–691.
  • Held J, Jeyaraj S, Kreidenweiss A. Antimalarial compounds in phase II clinical development. Expert Opin Investig Drugs. 2015;24(3):363–382.
  • Dong Y, Chollet J, Matile H, et al. Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting a workable structure-activity relationship using simple prototypes. J Med Chem. 2005;48(15):4953–4961.
  • Kaiser M, Wittlin S, Nehrbass-Stuedli A, et al. Peroxide bond-dependent antiplasmodial specificity of artemisinin and OZ277 (RBx11160). Antimicrob Agents Chemother. 2007;51(8):2991–2993.
  • Valecha N, Krudsood S, Tangpukdee N, et al. Arterolane maleate plus piperaquine phosphate for treatment of uncomplicated plasmodium falciparum malaria: a comparative, multicenter, randomized clinical trial. Clin Infect Dis. 2012;55(5):663–671.
  • Toure OA, Valecha N, Tshefu AK, et al. A phase 3, double-blind, randomized study of arterolane maleate-piperaquine phosphate vs artemether-lumefantrine for falciparum malaria in adolescent and adult patients in Asia and Africa. Clin Infect Dis. 2016;62(8):964–971.
  • Gautam A, Ahmed T, Sharma P, et al. Pharmacokinetics and pharmacodynamics of arterolane maleate following multiple oral doses in adult patients with P. falciparum malaria. J Clin Pharmacol. 2011;51(11):1519–1528.
  • Charman SA, Arbe-Barnes S, Bathurst IC, et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. PNAS. 2011;108(11):4400–4405.
  • Wang X, Dong Y, Wittlin S, et al. Comparative antimalarial activities and ADME profiles of ozonides (1,2,4-trioxolanes) OZ277, OZ439, and their 1,2-dioxolane, 1,2,4-trioxane, and 1,2,4,5-tetraoxane isosteres. J Med Chem. 2013;56(6):2547–2555.
  • Medicines for Malaria Venture. Interactive R&D portfolio. 2015. Available from: http://www.mmv.org/research-development/interactive-rd-portfolio
  • Moehrle JJ, Duparc S, Siethoff C, et al. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br J Clin Pharmacol. 2013;75(2):535–548.
  • Phyo AP, Jittamala P, Nosten FH, et al. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with plasmodium falciparum and plasmodium vivax malaria: an open-label phase 2 trial. Lancet Infect Dis. 2016;16(1):61–69.
  • Kreidenweiss A, Kremsner P, Dietz K, et al. In vitro activity of ferroquine (SAR97193) is independent of chloroquine resistance in plasmodium falciparum. Am J Trop Med Hyg. 2006;75(6):1178–1181.
  • Delhaes L, Abessolo H, Biot C, et al. In vitro and in vivo antimalarial activity of ferrochloroquine, a ferrocenyl analogue of chloroquine against chloroquine-resistant malaria parasites. Parasitol Res. 2001;87(3):239–244.
  • Biot C, Glorian G, Maciejewski L, et al. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J Med Chem. 1997;7(40):3715–3718.
  • Biot C, Nosten F, Fraisse L, et al. The antimalarial ferroquine: from bench to clinic. Parasite. 2011;18(3):207–214.
  • Mombo-Ngoma G, Supan C, Dal-Bianco MP, et al. Phase I randomized dose-ascending placebo-controlled trials of ferroquine–a candidate anti-malarial drug–in adults with asymptomatic Plasmodium falciparum infection. Malar J. 2011;10:53.
  • Supan C, Mombo-Ngoma G, Dal-Bianco MP, et al. Pharmacokinetics of ferroquine, a novel 4-aminoquinoline, in asymptomatic carriers of plasmodium falciparum infections. Antimicrob Agents Chemother. 2012;56(6):3165–3173.
  • Held J, Supan C, Salazar CLO, et al. Ferroquine and artesunate in African adults and children with plasmodium falciparum malaria: a phase 2, multicentre, randomised, double-blind, dose-ranging, non-inferiority study. Lancet Infect Dis. 2015;15(12):1409–1419.
  • Gargano N, Cenci F, Bassat Q. Antimalarial efficacy of piperaquine-based antimalarial combination therapies: facts and uncertainties. Trop Med Int Health. 2011;16(12):1466–1473.
  • Davis TM, Hung TY, Sim IK, et al. Piperaquine: a resurgent antimalarial drug. Drugs. 2005;65(1):75–87.
  • Basco LK, Ringwald P. In vitro activities of piperaquine and other 4-aminoquinolines against clinical isolates of plasmodium falciparum in Cameroon. Antimicrob Agents Chemother. 2003;47(4):1391–1394.
  • Deloron P, Le Bras J, Ramanamirija JA, et al. Plasmodium falciparum in Madagascar: in vivo and in vitro sensitivity to seven drugs. Ann Trop Med Parasitol. 1985;79(4):357–365.
  • Tarning J, Ashley EA, Lindegardh N, et al. Population pharmacokinetics of piperaquine after two different treatment regimens with dihydroartemisinin-piperaquine in patients with plasmodium falciparum malaria in Thailand. Antimicrob Agents Chemother. 2008;52(3):1052–1061.
  • Ahmed T, Sharma P, Gautam A, et al. Safety, tolerability, and single- and multiple-dose pharmacokinetics of piperaquine phosphate in healthy subjects. J Clin Pharmacol. 2008;48(2):166–175.
  • Tarning J, Zongo I, Some FA, et al. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther. 2012;91(3):497–505.
  • Hai TN, Hietala SF, Van Huong N, et al. The influence of food on the pharmacokinetics of piperaquine in healthy Vietnamese volunteers. Acta Trop. 2008;107(2):145–149.
  • Annerberg A, Lwin KM, Lindegardh N, et al. A small amount of fat does not affect piperaquine exposure in patients with malaria. Antimicrob Agents Chemother. 2011;55(9):3971–3976.
  • Sim IK, Davis TM, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother. 2005;49(6):2407–2411.
  • Amaratunga C, Lim P, Suon S, et al. Dihydroartemisinin-piperaquine resistance in plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16(3):357–365.
  • Darpo B, Ferber G, Siegl P, et al. Evaluation of the QT effect of a combination of piperaquine and a novel anti-malarial drug candidate OZ439, for the treatment of uncomplicated malaria. Br J Clin Pharmacol. 2015;80(4):706–715.
  • Crockett M, Kain KC. Tafenoquine: a promising new antimalarial agent. Expert Opin Investig Drugs. 2007;16(5):705–715.
  • Shanks GD, Oloo AJ, Aleman GM, et al. A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against plasmodium falciparum malaria. Clin Infect Dis. 2001;33(12):1968–1974.
  • Brueckner RP, Lasseter KC, Lin ET, et al. First-time-in-humans safety and pharmacokinetics of WR 238605, a new antimalarial. Am J Trop Med Hyg. 1998;58(5):645–649.
  • Miller AK, Harrell E, Ye L, et al. Pharmacokinetic interactions and safety evaluations of coadministered tafenoquine and chloroquine in healthy subjects. Br J Clin Pharmacol. 2013;76(6):858–867.
  • Walsh DS, Looareesuwan S, Wilairatana P, et al. Randomized dose-ranging study of the safety and efficacy of WR 238605 (Tafenoquine) in the prevention of relapse of plasmodium vivax malaria in Thailand. J Infect Dis. 1999;180(4):1282–1287.
  • Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. The Lancet. 2014;383(9922):1049–1058.
  • Nasveld PE, Edstein MD, Reid M, et al. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in nonimmune subjects. Antimicrob Agents Chemother. 2010;54(2):792–798.
  • Leary KJ, Riel MA, Roy MJ, et al. A randomized, double-blind, safety and tolerability study to assess the ophthalmic and renal effects of tafenoquine 200 mg weekly versus placebo for 6 months in healthy volunteers. Am J Trop Med Hyg. 2009;81(2):356–362.
  • Green JA, Patel AK, Patel BR, et al. Tafenoquine at therapeutic concentrations does not prolong fridericia-corrected QT interval in healthy subjects. J Clin Pharmacol. 2014;54(9):995–1005.
  • Marcsisin SR, Sousa JC, Reichard GA, et al. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malar J. 2014;13:2.
  • St Jean PL, Xue Z, Carter N, et al. Tafenoquine treatment of plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the phase 2b DETECTIVE trial. Malar J. 2016;15(1):97.
  • Wang J-Y, Cao W-C, Shan C-Q, et al. Naphthoquine phosphate and its combination with artemisinine. Acta Tropica. 2004;89(3):375–381.
  • Pang X, Wang G, Xing Q. Hundred and one cases plasmodium falciparum patients treated naphthoquine phosphate. Chin J Parasitol Parasitic Dis. 1999;17(1):20.
  • Naing C, Whittaker MA, Mak JW, et al. A systematic review of the efficacy of a single dose artemisinin-naphthoquine in treating uncomplicated malaria. Malar J. 2015;14(1):392.
  • Isba R, Zani B, Gathu M, et al. Artemisinin-naphthoquine for treating uncomplicated plasmodium falciparum malaria. Cochrane Database Syst Rev. 2015;2:Cd011547.
  • Rottmann M, McNamara C, Yeung BK, et al. Spiroindolones, a potent compound class for the treatment of malaria. Science (New York, NY). 2010;329(5996):1175–1180.
  • Smith PW, Diagana TT, Yeung BK. Progressing the global antimalarial portfolio: finding drugs which target multiple plasmodium life stages. Parasitology. 2014;141(1):66–76.
  • Van Pelt-Koops JC, Pett HE, Graumans W, et al. The spiroindolone drug candidate NITD609 potently inhibits gametocytogenesis and blocks plasmodium falciparum transmission to anopheles mosquito vector. Antimicrob Agents Chemother. 2012;56(7):3544–3548.
  • Leong FJ, Li R, Jain JP, et al. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel antimalarial spiroindolone KAE609 (Cipargamin) to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother. 2014;58(10):6209–6214.
  • White NJ, Pukrittayakamee S, Phyo AP, et al. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med. 2014;371(5):403–410.
  • Derbyshire ER, Prudencio M, Mota MM, et al. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci U S A. 2012;109(22):8511–8516.
  • Nagle A, Wu T, Kuhen K, et al. Imidazolopiperazines: lead optimization of the second-generation antimalarial agents. J Med Chem. 2012;55(9):4244–4273.
  • Kuhen KL, Chatterjee AK, Rottmann M, et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014;58(9):5060–5067.
  • Leong FJ, Zhao R, Zeng S, et al. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob Agents Chemother. 2014;58(11):6437–6443.
  • Phillips MA, Rathod PK. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect Disord Drug Targets. 2010;10(3):226–239.
  • Phillips M, Lotharius J, Marsh K, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci Transl Med. 2015;7:296.
  • Phillips MA, Gujjar R, Malmquist NA, et al. Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite plasmodium falciparum. J Med Chem. 2008;51(12):3649–3653.
  • Coteron JM, Marco M, Esquivias J, et al. Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem. 2011;54(15):5540–5561.
  • De D, Krogstad FM, Cogswell FB, et al. Aminoquinolines that circumvent resistance in plasmodium falciparum in vitro. Am J Trop Med Hyg. 1996;55(6):579–583.
  • Mzayek F, Deng H, Mather FJ, et al. Randomized dose-ranging controlled trial of AQ-13, a candidate antimalarial, and chloroquine in healthy volunteers. PLoS Clin Trials. 2007;2(1):e6.
  • White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis. 2007;7(8):549–558.
  • Tren R, Hess K, Bate R. Drug procurement, the global fund and misguided competition policies. Malar J. 2009;8:305.
  • Smith N, Obala A, Simiyu C, et al. Accessibility, availability and affordability of anti-malarials in a rural district in Kenya after implementation of a national subsidy scheme. Malar J. 2011;10:316.
  • United States Pharmacopeia Drug Quality and Information Program. Survey of the quality of selected antimalarial medicines circulating in Madagascar, Senegal, and Uganda: November 2009. Rockville (MD): The United States Pharmacopeial Convention; 2010.
  • Kurth F, Belard S, Adegnika AA, et al. Do paediatric drug formulations of artemisinin combination therapies improve the treatment of children with malaria? A systematic review and meta-analysis. Lancet Infect Dis. 2010;10(2):125–132.
  • Saunders D, Lon C. Combination therapies for malaria are failing-what next? Lancet Infect Dis. 2016;16(3):274–275.
  • Ramharter M, Oyakhirome S, Klein Klouwenberg P, et al. Artesunate-clindamycin versus quinine-clindamycin in the treatment of plasmodium falciparum malaria: a randomized controlled trial. Clin Infect Dis. 2005;40(12):1777–1784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.