646
Views
75
CrossRef citations to date
0
Altmetric
Review

Approaches to biofilm-associated infections: the need for standardized and relevant biofilm methods for clinical applications

, , , , &
Pages 147-156 | Received 08 Aug 2016, Accepted 15 Nov 2016, Published online: 09 Dec 2016

References

  • Geesey GG, Mutch R, Costerton JW, et al. Sessile bacteria: an important component of the microbial population in small mountain streams 1. Limnol Oceanogr. 1978;23(6):1214–1223.
  • James G, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008;16(1):37–44.
  • Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 2008;16(1):2–10.
  • Marsh PD, Bradshaw DJ. Dental plaque as a biofilm. J Ind Microbiol. 1995;15(3):169–175.
  • Marsh PD. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent Clin North Am. 2010;54(3):441–454.
  • Lam J, Chan R, Lam K, et al. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun. 1980;28(2):546–556.
  • Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 2001;9(2):50–52.
  • Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010;5(11):1663–1674.
  • Cole SJ, Records AR, Orr MW, et al. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun. 2014;82(5):2048–2058.
  • Hola V, Peroutkova T, Ruzicka F. Virulence factors in bacteria from biofilm communities of catheter-associated urinary tract infections. FEMS Immunol Med Microbiol. 2012;65(2):343.
  • Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202–211.
  • Boase S, Von Kleist M, Castillo ME, et al. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC Infect Dis. 2013;13(1):1–9.
  • McConoughey SJ, Howlin R, Granger JF, et al. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 2014;9(8):987–1007.
  • Ojha AK, Baughn AD, Sambandan D, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69(1):164–174.
  • Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75(6):499–511.
  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49(1):711–745.
  • Elder MJ, Stapleton F, Evans E, et al. Biofilm-related infections in ophthalmology. Eye. 1995;9(1):102–109.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Micro. 2004;2(2):95–108.
  • Otter JA, Vickery K, Walker JT, et al. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect. 2015;89(1):16–27.
  • Walters MC, Roe F, Bugnicourt A, et al. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–323.
  • Anwar H, Van Biesen T, Dasgupta M, et al. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother. 1989;33(10):1824–1826.
  • Machado I, Graça J, Lopes H, et al. Antimicrobial pressure of ciprofloxacin and gentamicin on biofilm development by an endoscope-isolated Pseudomonas aeruginosa. ISRN Biotechnol. 2013;2013:1–10.
  • Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms. The Lancet. 2001;358(9276):135–138.
  • Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. 2015;34(5):877–886.
  • Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow). 2005;70(2):267–274.
  • Tseng BS, Zhang W, Harrison JJ, et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 2013;15(10):2865–2878.
  • De Beer D, Stoodley P, Roe F, et al. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng. 1994;43(11):1131–1138.
  • James GA, Ge Zhao A, Usui M, et al. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair and Regeneration; 2016;24(2):373–383.
  • Kvist M, Hancock V, Klemm P. Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol. 2008;74(23):7376–7382.
  • Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000;44(3):640–646.
  • Rhoads DD, Wolcott RD, Percival SL. Biofilms in wounds: management strategies. J Wound Care. 2008;17(11):502–508.
  • Kathju S, Nistico L, Tower I, et al. Bacterial biofilms on implanted suture material are a cause of surgical site infection. Surg Infect. 2014;15(5):592–600.
  • Waters V, Ratjen F. Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. Cochrane Database Syst Rev. 2015;(3):CD009528. doi: 10.1002/14651858.CD009528.pub3.
  • Ceri H, Olson ME, Stremick C, et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771–1776.
  • Skogman ME, Vuorela PM, Fallarero A. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J Antibiot. 2012;65(9):453–459.
  • Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72(2):157–165.
  • Parker AE, Hamilton MA, Tomasino SF. A statistical model for assessing performance standards for quantitative and semiquantitative disinfectant test methods. J AOAC Int. 2014;97(1):58–67.
  • Goeres DM, Loetterle LR, Hamilton MA, et al. Statistical assessment of a laboratory method for growing biofilms. Microbiology. 2005;151(3):757–762.
  • Hamilton MA, Hamilton HG, Goeres DM, et al. Guidelines for the statistical analysis of a collaborative study of a laboratory method for testing disinfectant product performance. J AOAC Int. 2013;96(5):1138–1151.
  • Department of Health, Therapeutic Goods Administration Guidelines for the evaluation of sterilants and disinfectants. 1998. Available from: https://www.tga.gov.au/node/5327
  • Stojicic S, Shen Y, Haapasalo M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J Endod. 2013;39(4):473–477.
  • ASTM International. ASTM E2562-12, standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. 2012. Available from: http://www.astm.org/cgi-bin/resolver.cgi?E2562-12
  • ASTM International. Standard test method for quantification of pseudomonas aeruginosa biofilm grown with medium shear and continuous flow using rotating disk reactor. 2012. Available from: http://www.astm.org/cgi-bin/resolver.cgi?E2196-12
  • ASTM International. Standard test method for quantification of pseudomonas aeruginosa biofilm grown using drip flow biofilm reactor with low shear and continuous flow. 2013. Available from: http://www.astm.org/cgi-bin/resolver.cgi?E2647-13
  • ASTM International. Standard test method for testing disinfectant efficacy against pseudomonas aeruginosa biofilm using the MBEC assay. 2012. Available from: http://www.astm.org/cgi-bin/resolver.cgi?E2799-12
  • Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89–105.
  • Roberts AEL, Kragh KN, Bjarnsholt T, et al. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol. 2015;427(23):3646–3661.
  • Gomes IB, Simões M, Simões LC. An overview on the reactors to study drinking water biofilms. Water Res. 2014;62:63–87.
  • Zelver N, Hamilton M, Pitts B, et al. Methods for Measuring Antimicrobial Effects on Biofilm Bacteria: from Laboratory to Field. Invited Chapter, Biofilms: Methods Enzymology Series, R.J. Doyle (Ed.), Academic Press, San Diego, CA, 1999. pp. 608–628.
  • Goeres DM, Hamilton MA, Beck NA, et al. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat Protoc. 2009;4(5):783–788.
  • Woods J, Boegli L, Kirker KR, et al. Development and application of a polymicrobial in vitro wound biofilm model. J Appl Microbiol. 2012;112(5):998–1006.
  • Donlan RM, Piede JA, Heyes CD, et al. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol. 2004;70(8):4980–4988.
  • Harrison JJ, Stremick CA, Turner RJ, et al. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc. 2010;5(7):1236–1254.
  • Goeres, D.M., T. Palys, B.B. Sandel, J., et al. Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model. Water Res. 2004;38(13):3103–3109.
  • Goeres DM, Loetterle LR, Hamilton MA. A laboratory hot tub model for disinfectant efficacy evaluation. J Microbiol Methods. 2007;68(1):184–192.
  • Pajkos A, Vickery K, Cossart Y. Is biofilm accumulation on endoscope tubing a contributor to the failure of cleaning and decontamination? J Hosp Infect. 2004;58(3):224–229.
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–1043.
  • Peterson, SB, Irie, Y, Borlee BR, et al. Different methods for culturing biofilms in vitro. In: T. Bjarnsholt, et al., editors. Biofilm infections. New York (NY): Springer; 2011. 251–266.
  • Buckingham-Meyer K, Goeres DM, Hamilton MA. Comparative evaluation of biofilm disinfectant efficacy tests. J Microbiol Methods. 2007;70(2):236–244.
  • Kwiecinska-Pirog J, Bogiel T, Gospodarek E. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods. J Antibiot. 2013;66(10):593–597.
  • Muñoz-Egea M-C, García-Pedrazuela M, Mahillo I, et al. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol. 2015;15(1):18.
  • Zheng Z, Stewart PS. Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 2002;46(3):900–903.
  • Holmberg A, Mörgelin M, Rasmussen M. Effectiveness of ciprofloxacin or linezolid in combination with rifampicin against Enterococcus faecalis in biofilms. J Antimicrob Chemother. 2012;67(2):433–439.
  • Lety MA, Nair S, Berche P, et al. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1997;41(12):2629–2633.
  • Høiby N, Bjarnsholt T, Moser C, et al. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21(Supplement 1):S1–S25.
  • Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 2003;57(1):677–701.
  • Bjarnsholt T, Alhede M, Alhede M, et al. The in vivo biofilm. Trends Microbiol. 2013;21(9):466–474.
  • Tomasino SF. Development and assessment of disinfectant efficacy test methods for regulatory purposes. Am J Infect Control. 2013;41(5):S72–S76.
  • Croes S, Beisser PS, Neef C, et al. Unpredictable effects of rifampin as an adjunctive agent in elimination of rifampin-susceptible and -resistant Staphylococcus aureus strains grown in biofilms. Antimicrob Agents Chemother. 2010;54(9):3907–3912.
  • van Gennip M, Christensen LD, Alhede M, et al. Interactions between polymorphonuclear leukocytes and Pseudomonas aeruginosa biofilms on silicone implants in vivo. Infect Immun. 2012;80(8):2601–2607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.