676
Views
75
CrossRef citations to date
0
Altmetric
Review

The epidemiology of carbapenemases in Latin America and the Caribbean

, , &
Pages 277-297 | Received 26 Sep 2016, Accepted 02 Dec 2016, Published online: 20 Dec 2016

References

  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976.
  • Patel G, Bonomo RA. “Stormy waters ahead”: global emergence of carbapenemases. Front Microbiol. 2013;4:48.
  • Tzouvelekis LS, Markogiannakis A, Psichogiou M, et al. Carbapenemases in klebsiella pneumoniae and other enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25(4):682–707.
  • Falagas ME, Tansarli GS, Karageorgopoulos DE, et al. Deaths attributable to carbapenem-resistant enterobacteriaceae infections. Emerg Infect Dis. 2014;20(7):1170–1175.
  • Villegas MV, Pallares CJ, Escandón-Vargas K, et al. Characterization and clinical impact of bloodstream infection caused by carbapenemase-producing enterobacteriaceae in seven Latin American countries. Plos One. 2016;11(4):e0154092.
  • Hernández-Gómez C, Motoa G, Pallares C, et al. Economic impact of carbapenemase-producing Enterobacteriaceae causing bloodstream infections in Latin America. Open Forum Infect Dis. 2015;2(Suppl 1):S447.
  • Nordmann P, Mariotte S, Naas T, et al. Biochemical properties of a carbapenem-hydrolyzing β-lactamase from enterobacter cloacae and cloning of the gene into escherichia coli. Antimicrob Agents Chemother. 1993;37(5):939–946.
  • Naas T, Nordmann P. Analysis of a carbapenem-hydrolyzing class A β-lactamase from enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A. 1994;91(16):7693–7697.
  • Pottumarthy S, Moland ES, Juretschko S, et al. NmcA carbapenem-hydrolyzing enzyme in enterobacter cloacae in North America. Emerg Infect Dis. 2003;9(8):999–1002.
  • Deshpande LM, Jones RN, Fritsche TR, et al. Occurrence and characterization of carbapenemase-producing enterobacteriaceae: report from the SENTRY antimicrobial surveillance program (2000-2004). Microb Drug Resist. 2006;12(4):223–230.
  • Radice M, Power P, Gutkind G, et al. First class A carbapenemase isolated from enterobacteriaceae in Argentina. Antimicrob Agents Chemother. 2004;48(3):1068–1069.
  • Blanco VM, Rojas LJ, De La Cadena E, et al. First report of a nonmetallocarbapenemase class A carbapenemase in an enterobacter cloacae isolate from Colombia. Antimicrob Agents Chemother. 2013;57(7):3457.
  • Cuzon G, Naas T, Truong H, et al. Worldwide diversity of klebsiella pneumoniae that produces β-lactamase blaKPC-2 gene. Emerg Infect Dis. 2010;16(9):1349–1356.
  • Yu W-L, Lee M-F, Tang H-J, et al. Emergence of KPC new variants (KPC-16 and KPC-17) and ongoing outbreak in southern Taiwan. Clin Microbiol Infect. 2015;21(4):347.e5-8.
  • Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–1161.
  • Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–796.
  • Villegas MV, Lolans K, Correa A, et al. First detection of the plasmid-mediated class A carbapenemase KPC-2 in clinical isolates of klebsiella pneumoniae from South America. Antimicrob Agents Chemother. 2006;50(8):2880–2882.
  • Villegas MV, Lolans K, Correa A, et al. First identification of pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob Agents Chemother. 2007;51(4):1553–1555.
  • Lopez JA, Correa A, Navon- Venezia S, et al. Intercontinental spread from Israel to Colombia of a KPC-3- producing klebsiella pneumoniae strain. Clin Microbiol Infect. 2011;17(1):52–56.
  • Navon-Venezia S, Leavitt A, Schwaber MJ, et al. First report on a hyperepidemic clone of KPC-3-producing klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States. Antimicrob Agents Chemother. 2009;53(2):818–820.
  • Cuzon G, Naas T, Correa A, et al. Dissemination of the KPC-2 carbapenemase in non-klebsiella pneumoniae enterobacterial isolates from Colombia. Int J Antimicrob Agents. 2013;42(1):59–62.
  • Cuervo SI, Sánchez R, Gómez-Rincón JC, et al. Behavior of carbapenemase-producing klebsiella pneumoniae cases in cancer patients at a third level hospital in Bogotá, D.C. Biomedica. 2014;34(Suppl 1):170–180.
  • Martinez P, Sanchez L, Mattar S. Carbapenemase KPC-2 in ESBL-producing enterobacteriaceae from two clinics from Villavicencio, Colombia. Braz J Infect Dis. 2014;18(1):100–101.
  • Rodríguez EC, Saavedra SY, Leal AL, et al. The spread of KPC-3 klebsiella pneumoniae in hospitals in Bogotá over a three-year period (2008-2010). Biomedica. 2014;34(Suppl 1):224–231.
  • Pacheco R, Osorio L, Correa AM, et al. Prevalence of gram-negative bacteria harboring bla KPC gene in Colombian hospitals. Biomedica. 2014;34(Suppl 1):81–90.
  • Vanegas JM, Parra OL, Jiménez JN. Molecular epidemiology of carbapenem resistant gram-negative bacilli from infected pediatric population in tertiary-care hospitals in Medellín, Colombia: an increasing problem. BMC Infect Dis. 2016;16(1):463.
  • Mojica MF, Correa A, Vargas DA, et al. Molecular correlates of the spread of KPC-producing enterobacteriaceae in Colombia. Int J Antimicrob Agents. 2012;40(3):277–279.
  • Ocampo AM, Chen L, Cienfuegos AV, et al. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of non-CG258 clones of carbapenem-resistant klebsiella pneumoniae with distinct clinical characteristics. Antimicrob Agents Chemother. 2016;60(1):332–342.
  • Pavez M, Mamizuka EM, Lincopan N. Early dissemination of KPC-2-producing klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother. 2009;53(6):2702.
  • Zavascki AP, Zoccoli CM, Machado ABMP, et al. KPC-2-producing klebsiella pneumoniae in Brazil: a widespread threat in waiting? Int J Infect Dis. 2010;14(6):e539–40.
  • Monteiro J, Santos AF, Asensi MD, et al. First report of KPC-2-producing klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother. 2009;53(1):333–334.
  • Peirano G, Seki LM, Val Passos VL, et al. Carbapenem-hydrolysing β-lactamase KPC-2 in klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother. 2009;63(2):265–268.
  • Zavascki AP, Machado ABMP, De Oliveira KRP, et al. KPC-2-producing enterobacter cloacae in two cities from Southern Brazil. Int J Antimicrob Agents. 2009;34(3):286–288.
  • D’Alincourt Carvalho-Assef AP, Leão RS, Da Silva RV, et al. Escherichia coli producing KPC-2 carbapenemase: first report in Brazil. Diagn Microbiol Infect Dis. 2010;68(3):337–338.
  • Del Peloso PF, Barros MFL, De Santos FA D. Serratia marcescens KPC sepsis. J Bras Patol Med Lab. 2010;46(5):365–367.
  • Leão RS, Carvalho-Assef APDA, Correal JCD, et al. KPC-2 producing klebsiella pneumoniae and escherichia coli co-infection in a catheter-related infection. Clin Microbiol Infect. 2011;17(3):380–382.
  • Bergamasco MD, Barroso Barbosa M, De Oliveira Garcia D, et al. Infection with klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Traspl Infect Dis. 2012;14(2):198–205.
  • Almeida ACS, Cavalcanti FLS, Martins WMB, et al. First description of KPC-2-producing klebsiella oxytoca in Brazil. Antimicrob Agents Chemother. 2013;57(8):4077–4078.
  • Da Costa Guimarães AC, Almeida ACS, Nicoletti AG, et al. Clonal spread of carbapenem-resistant serratia marcescens isolates sharing an IncK plasmid containing blaKPC-2. Int J Antimicrob Agents. 2013;42(4):369–370.
  • Ribeiro VB, Andrade LN, Linhares AR, et al. Molecular characterization of klebsiella pneumoniae carbapenemase-producing isolates in southern Brazil. J Med Microbiol. 2013;62(Pt 11):1721–1727.
  • Freire MP, Pierrotti LC, Filho HHC, et al. Infection with klebsiella pneumoniae carbapenemase (KPC)-producing klebsiella pneumoniae in cancer patients. Eur J Clin Microbiol Infect Dis. 2015;34(2):277–286.
  • Arend LN, Pilonetto M, Siebra C, et al. Phenotypic and molecular characterization of 942 carbapenem-resistant enterobacteriaceae (CRE) in southern Brazil. J Infect Chemother. 2015;21(4):316–318.
  • Arend LN, Toledo P, Pilonetto M, et al. Molecular epidemiology of klebsiella pneumoniae carbapenemase-producing enterobacteriaceae in different facilities in Southern Brazil. Am J Infect Control. 2015;43(2):137–140.
  • Tuon FF, Scharf C, Rocha JL, et al. KPC-producing enterobacter aerogenes infection. Braz J Infect Dis. 2015;19(3):324–327.
  • Biberg CA, Rodrigues ACS, Do Carmo SF, et al. KPC-2-producing klebsiella pneumoniae in a hospital in the midwest region of Brazil. Braz J Microbiol. 2015;46(2):501–504.
  • Almeida ACS, De Castro KKA, Fehlberg LCC, et al. Carbapenem-resistant enterobacter gergoviae harbouring blaKPC-2 in Brazil. Int J Antimicrob Agents. 2014;44(4):369–370.
  • Seki LM, Pereira PS, De Souza M Da PAH, et al. Molecular epidemiology of KPC-2- producing klebsiella pneumoniae isolates in Brazil: the predominance of sequence type 437. Diagn Microbiol Infect Dis. 2011;70(2):274–277.
  • Andrade LN, Curiao T, Ferreira JC, et al. Dissemination of blaKPC-2 by the spread of klebsiella pneumoniae clonal complex 258 clones (ST258, ST11, ST437) and plasmids (IncFII, IncN, IncL/M) among enterobacteriaceae species in Brazil. Antimicrob Agents Chemother. 2011;55(7):3579–3583.
  • Pereira PS, De Araujo CFM, Seki LM, et al. Update of the molecular epidemiology of KPC-2-producing klebsiella pneumoniae in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother. 2013;68(2):312–316.
  • Castanheira M, Costello AJ, Deshpande LM, et al. Expansion of clonal complex 258 KPC-2-producing klebsiella pneumoniae in Latin American hospitals: report of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2012;56(3):1668–1669.
  • Fehlberg LCC, Carvalho AMC, Campana EH, et al. Emergence of klebsiella pneumoniae-producing KPC-2 carbapenemase in Paraíba, Northeastern Brazil. Braz J Infect Dis. 2012;16(6):577–580.
  • Nicoletti AG, Fehlberg LCC, Picão RC, et al. Clonal complex 258, the most frequently found multilocus sequence type complex in KPC-2-producing klebsiella pneumoniae isolated in Brazilian hospitals. Antimicrob Agents Chemother. 2012;56(8):4563–4564.
  • Tavares CP, Pereira PS, Marques EDA, et al. Molecular epidemiology of KPC-2-producing enterobacteriaceae (non-Klebsiella pneumoniae) isolated from Brazil. Diagn Microbiol Infect Dis. 2015;82(4):326–330.
  • Kazmierczak KM, Biedenbach DJ, Hackel M, et al. Global dissemination of blaKPC into bacterial species beyond klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob Agents Chemother. 2016;60(8):4490–4500.
  • Jaskulski MR, Medeiros BC, Borges JV, et al. Assessment of extended-spectrum β-lactamase, KPC carbapenemase and porin resistance mechanisms in clinical samples of klebsiella pneumoniae and enterobacter spp. Int J Antimicrob Agents. 2013;42(1):76–79.
  • Cabral AB, Maciel MAV, Barros JF, et al. Detection of bla KPC-2 in proteus mirabilis in Brazil. Rev Soc Bras Med Trop. 2015;48(1):94–95.
  • Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis. 2008;14(7):1178–1180.
  • Gomez SA, Pasteran FG, Faccone D, et al. Clonal dissemination of klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin Microbiol Infect. 2011;17(10):1520–1524.
  • Cejas D, Fernandez Canigia L, Nastro M, et al. Hyperendemic clone of KPC producing klebsiella pneumoniae ST 258 in Buenos Aires hospitals. Infect Genet Evol. 2012;12(3):499–501.
  • Córdova E, Lespada MI, Gómez N, et al. Clinical and epidemiological study of an outbreak of KPC-producing klebsiella pneumoniae infection in Buenos Aires, Argentina. Enferm Infecc Microbiol Clin. 2012;30(7):376–379.
  • Gregory CJ, Llata E, Stine N, et al. Outbreak of carbapenem-resistant klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect Control Hosp Epidemiol. 2010;31(5):476–484.
  • Robledo IE, Aquino EE, Vázquez GJ. Detection of the KPC gene in escherichia coli, klebsiella pneumoniae, pseudomonas aeruginosa, and acinetobacter baumannii during a PCR-based nosocomial surveillance study in Puerto Rico. Antimicrob Agents Chemother. 2011;55(6):2968–2970.
  • Marcano D, De Jesús A, Hernández L, et al. Frequency of enzymes associated with reduced sensitivity to beta-lactam antibiotics in enterobacteria isolates, Caracas, Venezuela. Rev Panam Salud Publica. 2011;30(6):529–534.
  • Luque J, Bohórquez P, Marcano D, et al. Spread of carbapenemase-producing enterobacteriaceae type KPC in Venezuela. Bol Venez Infectol. 2012;23(1):13–19.
  • Pena MC, Vierma H, Farina E, et al. First detection of escherichia coli KPC carbapenemase in Venezuela. 51st ICAAC. Chicago, USA: ASM; 2011. p. Abstract C1–1219.
  • Labrador I, Araque M. First description of KPC-2-producing klebsiella oxytoca isolated from a pediatric patient with nosocomial pneumonia in Venezuela. Case Rep Infect Dis. 2014;434987:2014.
  • Rodríguez-Zulueta P, Silva-Sánchez J, Barrios H, et al. First outbreak of KPC-3-producing klebsiella pneumoniae (ST258) clinical isolates in a Mexican medical center. Antimicrob Agents Chemother. 2013;57(8):4086–4088.
  • Garza-Ramos U, Moreno-Dominguez S, Hernández-Castro R, et al. Identification and characterization of imipenem-resistant klebsiella pneumoniae and susceptible klebsiella variicola isolates obtained from the same patient. Microb Drug Resist. 2016;22(3):179–184.
  • Garza-Ramos U, Barrios H, Reyna-Flores F, et al. Characteristics of KPC-2-producing klebsiella pneumoniae (ST258) clinical isolates from outbreaks in 2 Mexican medical centers. Diagn Microbiol Infect Dis. 2014;79(4):483–485.
  • Iñiguez D, Zurita J, Alcocer I, et al. Klebsiella pneumoniae carbapenemase type 2-producing bacteria: first case report in Ecuador. Rev Fac Cien Med. 2012;37:39–42.
  • Zurita J, Alcocer I, Ortega-Paredes D, et al. Carbapenem-hydrolysing β-lactamase KPC-2 in klebsiella pneumoniae isolated in ecuadorian hospitals. J Glob Antimicrob Resist. 2013;1(4):229–230.
  • Cifuentes M, García P, San Martín P, et al. First isolation of KPC in Chile: from Italy to a public hospital in Santiago. Rev Chil Infectol. 2012;29(2):224–228.
  • Marquez C, Ingold A, Echeverría N, et al. Emergence of KPC-producing klebsiella pneumoniae in Uruguay: infection control and molecular characterization. New Microbes New Infect. 2014;2(3):58–63.
  • Quiñones D, Hart M, Espinosa F, et al. Emergence of klebsiella pneumoniae clinical isolates producing KPC-2 carbapenemase in Cuba. New Microbes New Infect. 2014;2(4):123–126.
  • Instituto de Salud Pública de Chile. [Surveillance of antimicrobial resistance in bacteria that can cause healthcare-associated infections]. Bol Inst Salud Pública Chile. 2015;5(4):1–25.
  • Barría-Loaiza C, Pincheira A, Quezada M, et al. Molecular typing and genetic environment of the blaKPC gene in Chilean isolates of klebsiella pneumoniae. J Glob Antimicrob Resist. 2016;4:28–34.
  • Zúñiga J, Cruz G, Pérez C, et al. The combined-disk boronic acid test as an accurate strategy for the detection of KPC carbapenemase in Central America. J Infect Dev Ctries. 2016;10(3):298–303.
  • Jones RN, Guzman-Blanco M, Gales AC, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis. 2013;17(6):672–681.
  • Velásquez J, Hernández R, Pamo O, et al. Carbapenem-resistant klebsiella pneumoniae: first case of KPC type carbapenemase in Peru. Rev Soc Peru Med Interna. 2013;26(4):192–196.
  • Miriagou V, Tzouvelekis LS, Rossiter S, et al. Imipenem resistance in a salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother. 2003;47(4):1297–1300.
  • Rodríguez E, Bautista A, Barrero L. First report of a salmonella enterica serovar typhimurium isolate with carbapenemase (KPC-2) in Colombia. Antimicrob Agents Chemother. 2014;58(2):1263–1264.
  • Jure MA, Duprilot M, Musa HE, et al. Emergence of KPC-2-producing salmonella enterica serotype schwarzengrund in Argentina. Antimicrob Agents Chemother. 2014;58(10):6335–6336.
  • Melgarejo TN, Álvarez M, Irala J, et al. Primer aislamiento de Salmonella productora de KPC en Paraguay. 10° Congreso Paraguayo de Infectología. Asunción, Paraguay: Sociedad Paraguaya de Infectología; 2015.
  • Ribeiro VB, Zavascki AP, Nodari CS, et al. Detection of blaKPC-2 in a carbapenem-resistant kluyvera georgiana. J Antimicrob Chemother. 2012;67(11):2776–2777.
  • Wolter DJ, Khalaf N, Robledo IE, et al. Surveillance of carbapenem-resistant pseudomonas aeruginosa isolates from Puerto Rican medical center hospitals: dissemination of KPC and IMP-18 β-lactamases. Antimicrob Agents Chemother. 2009;53(4):1660–1664.
  • Wolter DJ, Kurpiel PM, Woodford N, et al. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob Agents Chemother. 2009;53(2):557–562.
  • Akpaka PE, Swanston WH, Ihemere HN, et al. Emergence of KPC-producing pseudomonas aeruginosa in trinidad and tobago. J Clin Microbiol. 2009;47(8):2670–2671.
  • Almeida ACS, Vilela MA, Cavalcanti FLS, et al. First description of KPC-2-producing pseudomonas putida in Brazil. Antimicrob Agents Chemother. 2012;56(4):2205–2206.
  • Jácome PRL De A, Alves LR, Cabral AB, et al. First report of KPC-producing pseudomonas aeruginosa in Brazil. Antimicrob Agents Chemother. 2012;56(9):4990.
  • Rizek C, Fu L, Dos Santos LC, et al. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann Clin Microbiol Antimicrob. 2014;13(1):43.
  • Pasteran F, Faccone D, Gomez S, et al. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing pseudomonas aeruginosa in Argentina. J Antimicrob Chemother. 2012;67(5):1291–1293.
  • Santella G, Cittadini R, Papalia M, et al. First clonal spread of KPC-producing pseudomonas aeruginosa in Buenos Aires, Argentina. Infect Genet Evol. 2012;12(8):2003–2005.
  • García Ramírez D, Nicola F, Zarate S, et al. Emergence of pseudomonas aeruginosa with KPC-type carbapenemase in a teaching hospital: an 8-year study. J Med Microbiol. 2013;62(Pt 10):1565–1570.
  • Robledo IE, Aquino EE, Santé MI, et al. Detection of KPC in acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother. 2010;54(3):1354–1357.
  • Poirel L, Le Thomas I, Naas T, et al. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from klebsiella pneumoniae. Antimicrob Agents Chemother. 2000;44(3):622–632.
  • Poirel L, Weldhagen GF, Naas T, et al. GES-2, a class A β-lactamase from pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother. 2001;45(9):2598–2603.
  • Wachino J, Doi Y, Yamane K, et al. Molecular characterization of a cephamycin-hydrolyzing and inhibitor-resistant class A β-lactamase, GES-4, possessing a single G170S substitution in the Ω-loop. Antimicrob Agents Chemother. 2004;48(8):2905–2910.
  • Vourli S, Giakkoupi P, Miriagou V, et al. Novel GES/IBC extended-spectrum β-lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett. 2004;234(2):209–213.
  • Moubareck C, Brémont S, Conroy M-C, et al. GES-11, a novel integron-associated GES variant in acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(8):3579–3581.
  • Bonnin RA, Nordmann P, Potron A, et al. GES-type extended-spectrum β-lactamase in acinetobacter baumannii. Antimicrob Agents Chemother. 2011;55(1):349–354.
  • Barbosa PP. Genetic and biochemical characterization of GES-16, a novel GES-type β-lactamase with carbapenemase activity in Serratia marcescens [master’s thesis]. São Paulo, Brazil: Universidade Federal de São Paulo; 2011.
  • Bebrone C, Bogaerts P, Delbrück H, et al. GES-18, a new carbapenem-hydrolyzing GES-type β-lactamase from pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother. 2013;57(1):396–401.
  • Barrios H, Garza-Ramos U, Ochoa-Sanchez LE, et al. A plasmid-encoded class 1 integron contains GES-type extended-spectrum β-lactamases in enterobacteriaceae clinical isolates in Mexico. Antimicrob Agents Chemother. 2012;56(7):4032–4034.
  • Pasteran F, Faccone D, Campos K, et al. Dissemination of GES extended-spectrum β-lactamase-producing Pseudomonas aeruginosa (PA) in Argentina. 44th ICAAC, Washington, DC, USA:American Society for Microbiology p. Abstract C2–1327. 2004.
  • Da Fonseca EL, Vieira VV, Cipriano R, et al. Emergence of blaGES-5 in clinical colistin-only-sensitive (COS) pseudomonas aeruginosa strain in Brazil. J Antimicrob Chemother. 2007;59(3):576–577.
  • Picão RC, Poirel L, Gales AC, et al. Diversity of β-lactamases produced by ceftazidime-resistant pseudomonas aeruginosa isolates causing bloodstream infections in Brazil. Antimicrob Agents Chemother. 2009;53(9):3908–3913.
  • Polotto M, Casella T, De Lucca Oliveira MG, et al. Detection of P. aeruginosa harboring blaCTX-M-2, blaGES-1 and blaGES-5, blaIMP-1 and blaSPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis. 2012;12:176.
  • Picão RC, Santos AF, Nicoletti AG, et al. Detection of GES-5-producing klebsiella pneumoniae in Brazil. J Antimicrob Chemother. 2010;65(4):796–797.
  • Ribeiro VB, Falci DR, Rozales FP, et al. Carbapenem-resistant GES-5-producing klebsiella pneumoniae in southern Brazil. Braz J Infect Dis. 2014;18(2):231–232.
  • Castillo-Vera J, Ribas-Aparicio RM, Nicolau CJ, et al. Unusual diversity of acquired β-lactamases in multidrug-resistant pseudomonas aeruginosa isolates in a Mexican hospital. Microb Drug Resist. 2012;18(5):471–478.
  • Garza-Ramos U, Barrios H, Reyna-Flores F, et al. Widespread of ESBL- and carbapenemase GES-type genes on carbapenem-resistant pseudomonas aeruginosa clinical isolates: a multicenter study in Mexican hospitals. Diagn Microbiol Infect Dis. 2015;81(2):135–137.
  • Nicoletti AG, Marcondes MFM, Martins WMBS, et al. Characterization of BKC-1 class A carbapenemase from klebsiella pneumoniae clinical isolates in Brazil. Antimicrob Agents Chemother. 2015;59(9):5159–5164.
  • Martins WMBS, Nicoletti AG, Santos SR, et al. Frequency of BKC-1-producing klebsiella species isolates. Antimicrob Agents Chemother. 2016;60(8):5044–5046.
  • Queenan AM, Carbapenemases: BK. the versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440–458.
  • Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–151.
  • Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994;38(1):71–78.
  • Ito H, Arakawa Y, Ohsuka S, et al. Plasmid-mediated dissemination of the metallo-β-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother. 1995;39(4):824–829.
  • Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-β-lactamase gene blaIMP. Antimicrob Agents Chemother. 1995;39(7):1612–1615.
  • Zhao W-H, Hu Z-Q. IMP-type metallo-β-lactamases in gram-negative bacilli: distribution, phylogeny, and association with integrons. Crit Rev Microbiol. 2011;37(3):214–226.
  • Gales AC, Tognim MCB, Reis AO, et al. Emergence of an IMP-like metallo-enzyme in an acinetobacter baumannii clinical strain from a Brazilian teaching hospital. Diagn Microbiol Infect Dis. 2003;45(1):77–79.
  • Lincopan N, McCulloch JA, Reinert C, et al. First isolation of metallo-β-lactamase-producing multiresistant klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol. 2005;43(1):516–519.
  • Sader HS, Reis AO, Silbert S, et al. IMPs, VIMs and SPMs: the diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect. 2005;11(1):73–76.
  • Marra AR, Pereira CAP, Gales AC, et al. Bloodstream infections with metallo-β-lactamase-producing pseudomonas aeruginosa: epidemiology, microbiology, and clinical outcomes. Antimicrob Agents Chemother. 2006;50(1):388–390.
  • Martins AF, Zavascki AP, Gaspareto PB, et al. Dissemination of pseudomonas aeruginosa producing SPM-1-like and IMP-1-like metallo-β-lactamases in hospitals from southern Brazil. Infection. 2007;35(6):457–460.
  • Gaspareto PB, Martins AF, Zavascki AP, et al. Occurrence of blaSPM-1 and blaIMP-1 genes of metallo-β-lactamases in clinical isolates of pseudomonas aeruginosa from three universitary hospitals in the city of Porto Alegre, Brazil. Braz J Microbiol. 2007;38:108–109.
  • Silva FM, Carmo MS, Silbert S, et al. SPM-1-producing pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist. 2011;17(2):215–220.
  • Camargo CH, Bruder-Nascimento A, Mondelli AL, et al. Detection of SPM and IMP metallo-β-lactamases in clinical specimens of pseudomonas aeruginosa from a Brazilian public tertiary hospital. Braz J Infect Dis. 2011;15(5):478–481.
  • Fehlberg LCC, Xavier DE, Peraro PP, et al. Beta-lactam resistance mechanisms in pseudomonas aeruginosa strains causing bloodstream infections: comparative results between Brazilian and American isolates. Microb Drug Resist. 2012;18(4):402–407.
  • Lucena A, Dalla Costa LM, Nogueira KS, et al. Nosocomial infections with metallo-beta-lactamase-producing pseudomonas aeruginosa: molecular epidemiology, risk factors, clinical features and outcomes. J Hosp Infect. 2014;87(4):234–240.
  • Sader HS, Castanheira M, Mendes RE, et al. Dissemination and diversity of metallo-β-lactamases in Latin America: report from the SENTRY antimicrobial surveillance program. Int J Antimicrob Agents. 2005;25(1):57–61.
  • Tognim MCB, Gales AC, Penteado AP, et al. Dissemination of IMP-1 metallo-β-lactamase-producing acinetobacter species in a Brazilian teaching hospital. Infect Control Hosp Epidemiol. 2006;27(7):742–747.
  • Mendes RE, Castanheira M, Toleman MA, et al. Characterization of an integron carrying blaIMP-1 and a new aminoglycoside resistance gene, aac(6ʹ)-31, and its dissemination among genetically unrelated clinical isolates in a Brazilian hospital. Antimicrob Agents Chemother. 2007;51(7):2611–2614.
  • Picão RC, Andrade SS, Nicoletti AG, et al. Metallo-β-lactamase detection: comparative evaluation of double-disk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIM-producing isolates. J Clin Microbiol. 2028–37;46(6):2008.
  • Mostachio AK, Levin AS, Rizek C, et al. High prevalence of OXA-143 and alteration of outer membrane proteins in carbapenem-resistant acinetobacter spp. isolates in Brazil. Int J Antimicrob Agents. 2012;39(5):396–401.
  • Lincopan N, Leis R, Vianello MA, et al. Enterobacteria producing extended-spectrum β-lactamases and IMP-1 metallo-β-lactamases isolated from Brazilian hospitals. J Med Microbiol. 2006;55(Pt 11):1611–1613.
  • Penteado AP, Castanheira M, Pignatari ACC, et al. Dissemination of blaIMP-1-carrying integron In86 among klebsiella pneumoniae isolates harboring a new trimethoprim resistance gene dfr23. Diagn Microbiol Infect Dis. 2009;63(1):87–91.
  • Mendes RE, Toleman MA, Ribeiro J, et al. Integron carrying a novel metallo-β-lactamase gene, blaIMP-16, and a fused form of aminoglycoside-resistant gene aac(6ʹ)-30/aac(6ʹ)-Ib’: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2004;48(12):4693–4702.
  • Cayô R, Rodrigues-Costa F, Matos AP, et al. Identification of a new integron harboring blaIMP-10 in carbapenem-resistant acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2015;59(6):3687–3689.
  • Silva KE, Cayô R, Carvalhaes CG, et al. Coproduction of KPC-2 and IMP-10 in carbapenem-resistant Serratia marcescens isolates from an outbreak in a Brazilian teaching hospital. J Clin Microbiol. 2015;53(7):2324–2328.
  • Kazmierczak KM, Rabine S, Hackel M, et al. Multiyear, multinational survey of the incidence and global distribution of metallo-β-lactamase-producing enterobacteriaceae and pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60(2):1067–1078.
  • Garza-Ramos U, Tinoco P, Silva-Sanchez J, et al. Metallo-β-lactamase IMP-18 is located in a class 1 integron (In96) in a clinical isolate of pseudomonas aeruginosa from Mexico. Int J Antimicrob Agents. 2008;31(1):78–80.
  • Sánchez-Martinez G, Garza-Ramos UJ, Reyna-Flores FL, et al. In169, a new class 1 integron that encoded blaIMP-18 in a multidrug-resistant pseudomonas aeruginosa isolate from Mexico. Arch Med Res. 2010;41(4):235–239.
  • Garza-Ramos U, Morfin-Otero R, Sader HS, et al. Metallo-β-lactamase gene blaIMP-15 in a class 1 integron, In95, from pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother. 2008;52(8):2943–2946.
  • Quinones-Falconi F, Galicia-Velasco M, Marchiaro P, et al. Emergence of pseudomonas aeruginosa strains producing metallo-β-lactamases of the IMP-15 and VIM-2 types in Mexico. Clin Microbiol Infect. 2010;16(2):126–131.
  • Garza-Ramos JU, Sanchez-Martinez G, Barajas JM, et al. Variability of the blaIMP-15-containing integrons, highly related to In95, on an endemic clone of pseudomonas aeruginosa in Mexico. Microb Drug Resist. 2010;16(3):191–195.
  • González-Chávez MI, Morfin-Otero R, Jarillo-Quijada C, et al. First report of blaVIM-4, blaIMP-1 and blaOXA-24-producing Acinetobacter baumannii clones isolated from nosocomial infections in Mexico. 51st ICAAC. Chicago, USA: American Society for Microbiology. 2011. p. Abstract C2–648.
  • Gales AC, Castanheira M, Jones RN, et al. Antimicrobial resistance among gram-negative bacilli isolated from Latin America: results from SENTRY antimicrobial surveillance program (Latin America, 2008-2010). Diagn Microbiol Infect Dis. 2012;73(4):354–360.
  • Fritsche TR, Sader HS, Toleman MA, et al. Emerging metallo-β-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program. Clin Infect Dis. 2005;41(Suppl 4):S276–8.
  • Fiorilli G, Faccone D, Lopardo H, et al. Emergence of metallo-β-lactamases in acinetobacter spp clinical isolates from Argentina. Rev Esp Quimioter. 2010;23(2):100–102.
  • Cejas D, Almuzara M, Santella G, et al. Phenotypic and genotypic characterization of imipenem-resistant pseudomonas aeruginosa isolated in a Buenos Aires hospital. Rev Argent Microbiol. 2008;40(4):238–245.
  • Santella G, Cuirolo A, Almuzara M, et al. Full resistance and decreased susceptibility to carbapenems in IMP-13-producing pseudomonas aeruginosa isolates from an outbreak. Antimicrob Agents Chemother. 2010;54(3):1381–1382.
  • Santella G, Pollini S, Docquier J-D, et al. Intercontinental dissemination of IMP-13-producing pseudomonas aeruginosa belonging in sequence type 621. J Clin Microbiol. 2010;48(11):4342–4343.
  • Gomez S, Rapoport M, Togneri A, et al. Emergence of metallo-β-lactamases in enterobacteriaceae from Argentina. Diagn Microbiol Infect Dis. 2011;69(1):94–97.
  • Togneri AM, Gómez SA, Podestá LB, et al. Dissemination of blaIMP-8 among enterobacteriaceae isolates from a Buenos Aires hospital. Rev Argent Microbiol. 2013;45(2):104–109.
  • Toval F, Guzmán-Marte A, Madriz V, et al. Predominance of carbapenem-resistant pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica. J Med Microbiol. 2015;64(Pt 1):37–43.
  • Martínez T, Vazquez GJ, Aquino EE, et al. Two novel class I integron arrays containing IMP-18 metallo-β-lactamase gene in Pseudomonas aeruginosa clinical isolates from puerto rico. Antimicrob Agents Chemother. 2012;56(4):2119–2121.
  • Martínez T, Vázquez GJ, Aquino EE, et al. First report of a pseudomonas aeruginosa clinical isolate co-harbouring KPC-2 and IMP-18 carbapenemases. Int J Antimicrob Agents. 2012;39(6):542–543.
  • Gonzales-Escalante E, Vicente-Taboada W, Champi-Merino R, et al. Metallo-β-lactamases in clinical isolates of pseudomonas aeruginosa in Lima, Peru. Rev Peru Med Exp Salud Publica. 2013;30(2):241–245.
  • Perozo Mena AJ, Castellano González MJ, Chávez Kathyuska T, et al. Assessment of phenotypic methods for metallobetalactamase detection in clinical isolates of pseudomonas aeruginosa. Kasmera. 2013;41(2):115–126.
  • Instituto Nacional de Salud. Caracterización fenotípica y genotípica de perfiles de resistencia antimicrobiana de aislamientos bacterianos recuperados en infecciones asociadas a la atención en salud (IAAS) septiembre 2012 - junio 2014. Colombia. Bogota DC, Colombia:Instituto Nacional de Salud. 2014.
  • Zhao W, Hu Z. Epidemiology and genetics of VIM-type metallo-β-lactamases in gram-negative bacilli. Future Microbiol. 2011;6(3):317–333.
  • Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–1590.
  • Cornaglia G, Mazzariol A, Lauretti L, et al. Hospital outbreak of carbapenem-resistant pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-β-lactamase. Clin Infect Dis. 2000;31(5):1119–1125.
  • Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891–897.
  • Mendes RE, Castanheira M, Garcia P, et al. First isolation of blaVIM-2 in Latin America: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2004;48(4):1433–1434.
  • Pérez IA, García CP, Poggi MH, et al. Presence of metallo β-lactamases in imipenem-resistant pseudomonas aeruginosa. Rev Med Chile. 2008;136:423–432.
  • Sánchez GDI, Marcano ZD, Spadola CE, et al. VIM-type metalloenzymes detected in clinical isolates of pseudomonas aeruginosa in four venezuelan hospitals. Rev Del Inst Nac Hig Rafael Rangel. 2008;39(2):17–22.
  • Guevara A, De Waard J, Araque M. blaVIM-2 gene detection in metallo-β-lactamase-producing pseudomonas aeruginosa strains isolated in an intensive care unit in Ciudad Bolívar, Venezuela. Rev Chil Infectol. 2009;26(4):336–341.
  • Guevara A, Sierra RCI, De Waard J. Molecular characterization of carbapenem-resistant pseudomonas aeruginosa from four hospitals of Venezuela. Rev Chil Infectol. 2012;29(6):614–621.
  • Guevara A, Sahai JM, Tedesco-Maiullari R. Clonal persistence of pseudomonas aeruginosa producing metallo-β-lactamases in a hospital in Ciudad Bolivar, Venezuela. Rev Soc Venez Microbiol. 2015;35:77–82.
  • Franco MRG, Caiaffa-Filho HH, Burattini MN, et al. Metallo-β-lactamases among imipenem-resistant pseudomonas aeruginosa in a Brazilian university hospital. Clinics. 2010;65(9):825–829.
  • Paez J, Levin AS, Fu L, et al. Clusters of infection due to metallo-β-lactamase-producing pseudomonas aeruginosa in stem cell transplant and haematology units. J Hosp Infect. 2011;77(1):76–77.
  • Crespo MP, Woodford N, Sinclair A, et al. Outbreak of carbapenem-resistant pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol. 2004;42(11):5094–5101.
  • Villegas MV, Lolans K, Del Rosario Olivera M, et al. First detection of metallo-β-lactamase VIM-2 in pseudomonas aeruginosa isolates from Colombia. Antimicrob Agents Chemother. 2006;50(1):226–229.
  • Correa A, Montealegre MC, Mojica MF, et al. First report of a pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother. 2012;56(10):5422–5423.
  • Vanegas JM, Cienfuegos AV, Ocampo AM, et al. Similar frequencies of pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol. 2014;52(11):3978–3986.
  • Correa A, Del Campo R, Perenguez M, et al. Dissemination of high-risk clones of extensively drug-resistant pseudomonas aeruginosa in colombia. Antimicrob Agents Chemother. 2015;59(4):2421–2425.
  • Pasteran F, Faccone D, Petroni A, et al. Novel variant (blaVIM-11) of the metallo-β-lactamase blaVIM family in a GES-1 extended-spectrum-β-lactamase-producing pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob Agents Chemother. 2005;49(1):474–475.
  • Marchiaro P, Tomatis PE, Mussi MA, et al. Biochemical characterization of metallo-β-lactamase VIM-11 from a pseudomonas aeruginosa clinical strain. Antimicrob Agents Chemother. 2008;52(6):2250–2252.
  • Pagniez G, Radice M, Cuirolo A, et al. Prevalence of metallo-β-lactamase in carbapenem resistant pseudomonas aeruginosa at a university hospital of Buenos Aires city. Rev Argent Microbiol. 2006;38(1):33–37.
  • Almuzara M, Radice M, De Gárate N, et al. VIM-2-producing pseudomonas putida, Buenos Aires. Emerg Infect Dis. 2007;13(4):668–669.
  • Marchiaro P, Viale AM, Ballerini V, et al. First report of a Tn402-like class 1 integron carrying blaVIM-2 in pseudomonas putida from Argentina. J Infect Dev Ctries. 2010;4(6):412–416.
  • Almuzara MN, Vazquez M, Tanaka N, et al. First case of human infection due to pseudomonas fulva, an environmental bacterium isolated from cerebrospinal fluid. J Clin Microbiol. 2010;48(2):660–664.
  • Ingold AJ, Castro M, Nabón A, et al. metallo-ß-lactamase gene detection in a class 1 integron associated to blaCTX-M-2 in a pseudomonas aeruginosa clinical isolate in Uruguay: first communication. Rev Argent Microbiol. 2011;43(3):198–202.
  • Marcano D, Pasterán F, Rapoport M, et al. First isolation of a VIM-producing klebsiella pneumoniae from a seven-year-old child in Venezuela. J Infect Dev Ctries. 2008;2(3):241–244.
  • Martínez D, Rodulfo HE, Rodríguez L, et al. First report of metallo-β-lactamases producing enterobacter spp. strains from Venezuela. Rev Inst Med Trop Sao Paulo. 2014;56(1):67–69.
  • Martínez D, Marcano D, Rodulfo H, et al. KPC and VIM producing enterobacter cloacae strain from a hospital in northeastern Venezuela. Invest Clin. 2015;56(2):182–187.
  • Morfin-Otero R, Rodriguez-Noriega E, Deshpande LM, et al. Dissemination of a blaVIM-2-carrying integron among enterobacteriaceae species in Mexico: report from the SENTRY antimicrobial surveillance program. Microb Drug Resist. 2009;15(1):33–35.
  • Montealegre MC, Correa A, Briceño DF, et al. Novel VIM metallo-β-lactamase variant, VIM-24, from a klebsiella pneumoniae isolate from Colombia. Antimicrob Agents Chemother. 2011;55(5):2428–2430.
  • Rojas LJ, Mojica MF, Blanco VM, et al. Emergence of klebsiella pneumoniae coharboring KPC and VIM carbapenemases in Colombia. Antimicrob Agents Chemother. 2013;57(2):1101–1102.
  • Nastro M, Monge R, Zintgraff J, et al. First nosocomial outbreak of VIM-16-producing serratia marcescens in Argentina. Clin Microbiol Infect. 2013;19(7):617–619.
  • Almuzara MN, Barberis CM, Rodríguez CH, et al. First report of an extensively drug-resistant VIM-2 metallo-β-lactamase-producing brevundimonas diminuta clinical isolate. J Clin Microbiol. 2012;50(8):2830–2832.
  • Alcántar-Curiel MD, García-Torres LF, González-Chávez MI, et al. Molecular mechanisms associated with nosocomial carbapenem-resistant acinetobacter baumannii in Mexico. Arch Med Res. 2014;45(7):553–560.
  • Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis. 2011;11(5):381–393.
  • Shahcheraghi F, Abbasalipour M, Feizabadi MM, et al. Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol. 2011;3(2):68–74.
  • Toleman MA, Simm AM, Murphy TA, et al. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2002;50(5):673–679.
  • Poirel L, Magalhaes M, Lopes M, et al. Molecular analysis of metallo-β-lactamase gene blaSPM-1-surrounding sequences from disseminated pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother. 2004;48(4):1406–1409.
  • Salabi AE, Toleman MA, Weeks J, et al. First report of the metallo-β-lactamase SPM-1 in Europe. Antimicrob Agents Chemother. 2010;54(1):582.
  • Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296–316.
  • Fonseca EL, Marin MA, Encinas F, et al. Full characterization of the integrative and conjugative element carrying the metallo-β-lactamase blaSPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic pseudomonas aeruginosa clone SP/ST277. J Antimicrob Chemother. 2015;70(9):2547–2550.
  • Hopkins KL, Meunier D, Findlay J, et al. SPM-1 metallo-β-lactamase-producing pseudomonas aeruginosa ST277 in the UK. J Med Microbiol. 2016;65(7):696–697.
  • Gales AC, Menezes LC, Silbert S, et al. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant pseudomonas aeruginosa producing SPM metallo-β-lactamase. J Antimicrob Chemother. 2003;52(4):699–702.
  • Zavascki AP, Gaspareto PB, Martins AF, et al. Outbreak of carbapenem-resistant pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother. 2005;56(6):1148–1151.
  • Magalhaes V, Lins AK, Magalhaes M. Metallo-β-lactamase producing pseudomonas aeruginosa strains isolated in hospitals in Recife, PE, Brazil. Braz J Microbiol. 2005;36:123–125.
  • Viana Vieira V, Lourenço Da Fonseca E, Paulo VAC. Metallo-β-lactamases produced by carbapenem-resistant pseudomonas aeruginosa in Brazil. Clin Microbiol Infect. 2005;11(11):937.
  • Carvalho APD, Albano RM, De Oliveira DN, et al. Characterization of an epidemic carbapenem-resistant pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a hospital located in Rio de Janeiro, Brazil. Microb Drug Resist. 2006;12(2):103–108.
  • Pellegrino FLPC, Casali N, Dos Santos KRN, et al. Pseudomonas aeruginosa epidemic strain carrying blaSPM metallo-beta-lactamase detected in Rio de Janeiro, Brazil. J Chemother. 2006;18(2):151–156.
  • Zavascki AP, Goldani LZ, Gonçalves ALS, et al. High prevalence of metallo-β-lactamase-mediated resistance challenging antimicrobial therapy against pseudomonas aeruginosa in a Brazilian teaching hospital. Epidemiol Infect. 2007;135(2):343–345.
  • Cipriano R, Vieira VV, Fonseca EL, et al. Coexistence of epidemic colistin-only-sensitive clones of pseudomonas aeruginosa, including the blaSPM clone, spread in hospitals in a Brazilian Amazon City. Microb Drug Resist. 2007;13(2):142–146.
  • Pellegrino FLPC, Casali N, Nouér SA, et al. A carbapenem-susceptible pseudomonas aeruginosa strain carrying the blaSPM gene. Diagn Microbiol Infect Dis. 2008;61(2):214–216.
  • Wirth FW, Picoli SU, Cantarelli VV, et al. Metallo-β-lactamase-producing pseudomonas aeruginosa in two hospitals from southern Brazil. Braz J Infect Dis. 2009;13(3):170–172.
  • Gonçalves DCPS, Lima ABM, Leão LSNDO, et al. Detection of metallo-beta-lactamase in pseudomonas aeruginosa isolated from hospitalized patients in Goiânia, State of Goiás. Rev Soc Bras Med Trop. 2009;42(4):411–414.
  • Jácome PRLDA, Alves LR, Cabral AB, et al. Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Rev Soc Bras Med Trop. 2012;45(6):707–712.
  • De Oliveira RA, Gales AC, Da Silva RC, et al. Description and molecular characterization of metallo-β-lactamase SPM-1 in pseudomonas aeruginosa clinical strains from Goiânia, Brazil. Perspect Médicas. 2014;25(1):11–19.
  • Barros EMLR, Morais VMS, Castro KCB, et al. First detection of metallo-β-lactamases in nosocomial isolates of pseudomonas aeruginosa in Alagoas, Brazil. J Bras Patol Med Lab. 2015;51(5):291–295.
  • Costa LMDA, Fleming MEDCK, Paula GRD, et al. Production of metallo-β-lactamase among pseudomonas aeruginosa strains isolated in the State of Sergipe, Brazil. Rev Soc Bras Med Trop. 2015;48(2):212–215.
  • Fonseca ELD, Freitas FDS, Vicente ACP. The colistin-only-sensitive Brazilian pseudomonas aeruginosa clone SP (sequence type 277) is spread worldwide. Antimicrob Agents Chemother. 2010;54(6):2743.
  • Woodford N, Turton JF, Livermore DM. Multiresistant gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5):736–755.
  • Rossi F. The challenges of antimicrobial resistance in Brazil. Clin Infect Dis. 2011;52(9):1138–1143.
  • Andrade LN, Woodford N, Darini ALC. International gatherings and potential for global dissemination of São Paulo metallo-β-lactamase (SPM) from Brazil. Int J Antimicrob Agents. 2014;43(2):196–197.
  • Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–5054.
  • Nordmann P, Poirel L, Walsh TR, et al. The emerging NDM carbapenemases. Trends Microbiol. 2011;19(12):588–595.
  • Pasteran F, Albornoz E, Faccone D, et al. Emergence of NDM-1-producing klebsiella pneumoniae in Guatemala. J Antimicrob Chemother. 2012;67(7):1795–1797.
  • Escobar Pérez JA, Olarte Escobar NM, Castro-Cardozo B, et al. Outbreak of NDM-1-producing klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 2013;57(4):1957–1960.
  • Ovalle MV, Duarte C, Saavedra SY, et al. Circulación de carbapenemasas tipo New Delhi metalo-β-lactamasa (NDM), Colombia, 2011 a 2013. Inf Quinc Epidemiol Nac. 2013;18(11):122–132.
  • Instituto Nacional de Salud. Circulación de carbapenemasas tipo Nueva Delhi metalo-β-lactamasa (NDM) en Colombia 2012-2014. Colombia:  Instituto Nacional de Salud. 2014.
  • Saavedra-Rojas S-Y, Duarte-Valderrama C, González-de-Arias M-N, et al. Emergence of providencia rettgeri NDM-1 in two departments of Colombia, 2012-2013. Enferm Infecc Microbiol Clin. 2013. DOI:10.1016/j.eimc.2015.05.011
  • Rojas LJ, Wright MS, De La Cadena E, et al. Initial assessment of the molecular epidemiology of blaNDM-1 in Colombia. Antimicrob Agents Chemother. 2016;60(7):4346–4350.
  • Pan American Health Organization (PAHO). Epidemiological alert: nosocomial transmission of NDM-type multiresistant bacteria. Washington, DC: Pan American Health Organization (PAHO). 2012 Dec 19.
  • Seija V, Medina Presentado JC, Bado I, et al. Sepsis caused by New Delhi metallo-β-lactamase (blaNDM-1) and qnrD-producing Morganella morganii, treated successfully with fosfomycin and meropenem: case report and literature review. Int J Infect Dis. 2015;30:20–26.
  • Pasteran F, Mora MM, Albornoz E, et al. Emergence of genetically unrelated NDM-1-producing acinetobacter pittii strains in Paraguay. J Antimicrob Chemother. 2014;69(9):2575–2578.
  • Waterman PE, McGann P, Snesrud E, et al. Bacterial peritonitis due to acinetobacter baumannii sequence type 25 with plasmid-borne New Delhi metallo-β-lactamase in Honduras. Antimicrob Agents Chemother. 2013;57(9):4584–4586.
  • Barrios H, Garza-Ramos U, Reyna-Flores F, et al. Isolation of carbapenem-resistant NDM-1-positive providencia rettgeri in Mexico. J Antimicrob Chemother. 2013;68(8):1934–1936.
  • Barrios H, Silva-Sanchez J, Reyna-Flores F, et al. Detection of a NDM-1-producing klebsiella pneumoniae (ST22) clinical isolate at a pediatric hospital in Mexico. Pediatr Infect Dis J. 2014;33(3):335.
  • Torres-González P, Bobadilla-Del Valle M, Tovar-Calderón E, et al. Outbreak caused by enterobacteriaceae harboring NDM-1 metallo-β-lactamase carried in an IncFII plasmid in a tertiary care hospital in Mexico city. Antimicrob Agents Chemother. 2015;59(11):7080–7083.
  • Carvalho-Assef APD, Pereira PS, Albano RM, et al. Isolation of NDM-producing providencia rettgeri in Brazil. J Antimicrob Chemother. 2013;68(12):2956–2957.
  • Carvalho-Assef APD, Pereira PS, Albano RM, et al. Detection of NDM-1-, CTX-M-15-, and qnrB4-producing enterobacter hormaechei isolates in Brazil. Antimicrob Agents Chemother. 2014;58(4):2475–2476.
  • Rozales FP, Ribeiro VB, Magagnin CM, et al. Emergence of NDM-1-producing enterobacteriaceae in Porto Alegre, Brazil. Int J Infect Dis. 2014;25:79–81.
  • Carneiro M, Gonçalves RA, De Souza JG, et al. New carbapenases in Brazil. Expert Rev Anti Infect Ther. 2014;12(2):155–156.
  • Carmo Junior NVD, Filho HF, Gomes E Costa DA, et al. First report of a NDM-producing providencia rettgeri strain in the state of São Paulo. Braz J Infect Dis. 2015;19(6):675–676.
  • Andrade LN, Darini ALC. Response to detection of New Delhi metallo-β-lactamase-producing bacteria, Brazil. Emerg Infect Dis. 2015;21(6):1069–1071.
  • Quiles MG, Rocchetti TT, Fehlberg LC, et al. Unusual association of NDM-1 with KPC-2 and armA among Brazilian enterobacteriaceae isolates. Braz J Med Biol Res. 2015;48(2):174–177.
  • Pereira PS, Borghi M, Albano RM, et al. Coproduction of NDM-1 and KPC-2 in enterobacter hormaechei from Brazil. Microb Drug Resist. 2015;21(2):234–236.
  • Pillonetto M, Arend L, Vespero EC, et al. First report of NDM-1-producing acinetobacter baumannii sequence type 25 in Brazil. Antimicrob Agents Chemother. 2014;58(12):7592–7594.
  • Pagano M, Poirel L, Martins AF, et al. Emergence of NDM-1-producing acinetobacter pittii in Brazil. Int J Antimicrob Agents. 2015;45(4):444–445.
  • Pasteran F, Meo A, Gomez S, et al. Emergence of genetically related NDM-1-producing providencia rettgeri strains in Argentina. J Glob Antimicrob Resist. 2014;2(4):344–345.
  • Montaña S, Cittadini R, Del Castillo M, et al. Presence of New Delhi metallo-β-lactamase gene (NDM-1) in a clinical isolate of acinetobacter junii in Argentina. New Microbes New Infect. 2016;11:43–44.
  • Pan American Health Organization (PAHO) /World Health Organization (WHO). Epidemiological update. Carbapenemases of type New Delhi metallo-β-lactamase (NDM). Washington, DC: Pan American Health Organization (PAHO). 2014 Mar 7.
  • Quiñones D, Carvajal I, Perez Y, et al. High prevalence of blaOXA-23 in acinetobacter spp. and detection of blaNDM-1 in A. soli in Cuba: report from national surveillance program (2010-2012). New Microbes New Infect. 2015;7:52–56.
  • Thoms-Rodriguez C-A, Mazzulli T, Christian N, et al. New Delhi metallo-β-lactamase in Jamaica. J Infect Dev Ctries. 2016;10(2):183–187.
  • Bastian S, Nordmann P, Creton E, et al. First case of NDM-1 producing klebsiella pneumoniae in Caribbean islands. Int J Infect Dis. 2015;34:53–54.
  • Delgado-Blas JF, Ovejero CM, Abadia-Patiño L, et al. Coexistence of mcr-1 and blaNDM-1 in escherichia coli from Venezuela. Antimicrob Agents Chemother. 2016;60(10):6356–6358.
  • Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38.
  • Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev. 2014;27(2):241–263.
  • Mugnier PD, Poirel L, Naas T, et al. Worldwide dissemination of the blaOXA-23 carbapenemase gene of acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.
  • Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72–77.
  • Paton R, Miles RS, Hood J, et al. ARI 1: β-lactamase-mediated imipenem resistance in acinetobacter baumannii. Int J Antimicrob Agents. 1993;2(2):81–87.
  • Donald HM, Scaife W, Amyes SG, et al. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in acinetobacter baumannii 6B92. Antimicrob Agents Chemother. 2000;44(1):196–199.
  • Scaife W, Young HK, Paton RH, et al. Transferable imipenem-resistance in acinetobacter species from a clinical source. J Antimicrob Chemother. 1995;36(3):585–586.
  • Bonnet R, Marchandin H, Chanal C, et al. Chromosome-encoded class D β-lactamase OXA-23 in proteus mirabilis. Antimicrob Agents Chemother. 2002;46(6):2004–2006.
  • Dalla-Costa LM, Coelho JM, Souza HAPHM, et al. Outbreak of carbapenem-resistant acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J Clin Microbiol. 2003;41(7):3403–3406.
  • Carvalho KR, Carvalho-Assef APD, Peirano G, et al. Dissemination of multidrug-resistant acinetobacter baumannii genotypes carrying blaOXA-23 collected from hospitals in Rio de Janeiro, Brazil. Int J Antimicrob Agents. 2009;34(1):25–28.
  • Martins AF, Kuchenbecker R, Sukiennik T, et al. Carbapenem-resistant acinetobacter baumannii producing the OXA-23 enzyme: dissemination in Southern Brazil. Infection. 2009;37(5):474–476.
  • Schimith Bier KE, Luiz SO, Scheffer MC, et al. Temporal evolution of carbapenem-resistant acinetobacter baumannii in Curitiba, southern Brazil. Am J Infect Control. 2010;38(4):308–314.
  • Antonio CS, Neves PR, Medeiros M, et al. High prevalence of carbapenem-resistant acinetobacter baumannii carrying the blaOXA-143 gene in Brazilian hospitals. Antimicrob Agents Chemother. 2011;55(3):1322–1323.
  • Werneck JS, Picão RC, Girardello R, et al. Low prevalence of blaOXA-143 in private hospitals in Brazil. Antimicrob Agents Chemother. 2011;55(9):4494–4495.
  • Grosso F, Carvalho KR, Quinteira S, et al. OXA-23-producing acinetobacter baumannii: a new hotspot of diversity in Rio de Janeiro? J Antimicrob Chemother. 2011;66(1):62–65.
  • Figueiredo DQD, Santos KRND, Pereira EM, et al. First report of the blaOXA-58 gene in a clinical isolate of acinetobacter baumannii in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz. 2011;106(3):368–370.
  • Corrêa LL, Botelho LAB, Barbosa LC, et al. Detection of blaOXA-23 in acinetobacter spp. isolated from patients of a university hospital. Braz J Infect Dis. 2012;16(6):521–526.
  • Martins AF, Kuchenbecker RS, Pilger KO, et al. High endemic levels of multidrug-resistant acinetobacter baumannii among hospitals in southern Brazil. Am J Infect Control. 2012;40(2):108–112.
  • Fonseca EL, Scheidegger E, Freitas FS, et al. Carbapenem-resistant acinetobacter baumannii from Brazil: role of carO alleles expression and blaOXA-23 gene. BMC Microbiol. 2013;13(1):245.
  • Martins N, Martins IS, De Freitas WV, et al. Imported and intensive care unit-born acinetobacter baumannii clonal complexes: one-year prospective cohort study in intensive care patients. Microb Drug Resist. 2013;19(3):216–223.
  • Clímaco EC, Oliveira ML, De, Pitondo-Silva A, et al. Clonal complexes 104, 109 and 113 playing a major role in the dissemination of OXA-carbapenemase-producing acinetobacter baumannii in Southeast Brazil. Infect Genet Evol. 2013;19:127–133.
  • Chagas TPG, Carvalho KR, De Oliveira Santos IC, et al. Characterization of carbapenem-resistant acinetobacter baumannii in Brazil (2008-2011): countrywide spread of OXA-23-producing clones (CC15 and CC79). Diagn Microbiol Infect Dis. 2014;79(4):468–472.
  • Vasconcelos ATR, Barth AL, Zavascki AP, et al. The changing epidemiology of acinetobacter spp. producing OXA carbapenemases causing bloodstream infections in Brazil: a BrasNet report. Diagn Microbiol Infect Dis. 2015;83(4):382–385.
  • Dias VC, Diniz CG, Peter ACDO, et al. Epidemiological characteristics and antimicrobial susceptibility among carbapenem-resistant non-fermenting bacteria in Brazil. J Infect Dev Ctries. 2016;10(6):544–553.
  • Teixeira AB, Martins AF, Barin J, et al. First report of carbapenem-resistant acinetobacter nosocomialis isolates harboring ISAba1-blaOXA-23 genes in Latin America. J Clin Microbiol. 2013;51(8):2739–2741.
  • Carvalho KR, Carvalho-Assef APD, Santos LGD. Occurrence of blaOXA-23 gene in imipenem-susceptible acinetobacter baumannii. Mem Inst Oswaldo Cruz. 2011;106(4):505–506.
  • Merkier AK, Catalano M, Ramírez MS, et al. Polyclonal spread of blaOXA-23 and blaOXA-58 in acinetobacter baumannii isolates from Argentina. J Infect Dev Ctries. 2008;2(3):235–240.
  • Merkier AK, Centrón D. blaOXA-51-type β-lactamase genes are ubiquitous and vary within a strain in acinetobacter baumannii. Int J Antimicrob Agents. 2006;28(2):110–113.
  • Stietz MS, Ramírez MS, Vilacoba E, et al. Acinetobacter baumannii extensively drug resistant lineages in Buenos Aires hospitals differ from the international clones I-III. Infect Genet Evol. 2013;14(1):294–301.
  • Rodriguez CH, Balderrama Yarhui N, Nastro M, et al. Molecular epidemiology of carbapenem-resistant acinetobacter baumannii in South America. J Med Microbiol. 2016. DOI:10.1099/jmm.0.000328
  • Cuaical Ramos NM, Delgado Borrero YA, Anzola Anzola YM, et al. Detection of OXA type carbapenemases in acinetobacter baumannii from different hospital centers in Caracas, Venezuela. Rev Soc Ven Microbiol. 2012;32(2):95–100.
  • Villegas MV, Kattan JN, Correa A, et al. Dissemination of acinetobacter baumannii clones with OXA-23 carbapenemase in Colombian hospitals. Antimicrob Agents Chemother. 2007;51(6):2001–2004.
  • Pinzon JO, Mantilla JR, Valenzuela EM, et al. Molecular characterization of acinetobacter baumannii isolations from a burns unit in a third level attention hospital in Bogotá. Infectio. 2006;10(2):71–78.
  • Saavedra SY, Nuñez JC, Pulido IY, et al. Characterisation of carbapenem-resistant acinetobacter calcoaceticus-A. baumannii complex isolates in a third-level hospital in Bogotá, Colombia. Int J Antimicrob Agents. 2008;31(4):389–391.
  • Saavedra-Trujillo CH, Arias-León G, Gualtero-Trujillo SM, et al. Risk factors for colonisation or infection by Acinetobacter baumannii resistant to carbapenems in adult patients hospitalised in intensive care units in Bogota, Colombia. Infectio. 2016;20(4):238–249.
  • Martínez P, Mattar S. Imipenem-resistant acinetobacter baumannii carrying the ISAba1-blaOXA-23,51 and ISAba1-blaADC-7 genes in Monteria, Colombia. Braz J Microbiol. 2012;43(4):1274–1280.
  • Vanegas JM, Higuita LF, Vargas CA, et al. Carbapenem-resistant acinetobacter baumannii causing osteomyelitis and infections of skin and soft tissues in hospitals of Medellín, Colombia. Biomedica. 2015;35(4):522–530.
  • Correa A, Del Campo R, Escandón-Vargas K, et al. Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from Colombian hospitals. Microb Drug Resist. 2016.
  • Reguero MT, Medina OE, Hernández MA, et al. Antibiotic resistance patterns of acinetobacter calcoaceticus-A. baumannii complex species from Colombian hospitals. Enferm Infecc Microbiol Clin. 2013;31(3):142–146.
  • Opazo A, Bello H, Dominguez M, et al. First report of blaOXA-23 in acinetobacter baumannii isolates from Chilean hospitals. J Glob Antimicrob Resist. 2015;3(1):54–55.
  • Thoms-Rodriguez C-A, Nicholson A, Christian N, et al. The detection of the NDM-1 and other carbapenemase genes in multidrug resistant gram negative bacilli (MDRGNB) in a Jamaican hospital. Int J Infect Dis. 2012;16(2):e434–e435.
  • Tamayo-Legorreta EM, Garza-Ramos U, Barrios-Camacho H, et al. Identification of OXA-23 carbapenemases: novel variant OXA-239 in acinetobacter baumannii ST758 clinical isolates in Mexico. New Microbes New Infect. 2014;2(6):173–174.
  • Gonzalez-Villoria AM, Tamayo-Legorreta E, Garza-Ramos U, et al. A multicenter study in Mexico finds acinetobacter baumannii clinical isolates belonging to clonal complexes 636B (113B) and 92B harboring OXA-72, OXA-239, and OXA-469. Antimicrob Agents Chemother. 2016;60(4):2587–2588.
  • Nuñez Quezada T, Rodríguez CH, Castro Cañarte G, et al. Outbreak of blaOXA-72-producing acinetobacter baumannii in South America. J Chemother. 2016. DOI:10.1080/1120009X.2016.1158936
  • Sennati S, Villagran AL, Bartoloni A, et al. OXA-23-producing ST25 acinetobacter baumannii: first report in Bolivia. J Glob Antimicrob Resist. 2016;4:70–71.
  • Karah N, Sundsfjord A, Towner K, et al. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of acinetobacter baumannii. Drug Resist Updat. 2012;15(4):237–247.
  • Bou G, Oliver A, Martínez-Beltrán J. OXA-24, a novel class D β-lactamase with carbapenemase activity in an acinetobacter baumannii clinical strain. Antimicrob Agents Chemother. 2000;44(6):1556–1561.
  • Mendes RE, Castanheira M, Deshpande LM, et al. Rapid emergence and spread of Acinetobacter spp. producing carbapenem-hydrolyzing oxacillinases: report from the SENTRY program. 48th ICAAC/46th IDSA. Washington, DC, USA: American Society for Microbiology (ASM) and Infectious Diseases Society of America (IDSA). 2008. p. Abstract C2–3857.
  • Bocanegra-Ibarias P, Peña-López C, Camacho-Ortiz A, et al. Genetic characterisation of drug resistance and clonal dynamics of acinetobacter baumannii in a hospital setting in Mexico. Int J Antimicrob Agents. 2015;45(3):309–313.
  • Werneck JS, Picão RC, Carvalhaes CG, et al. OXA-72-producing acinetobacter baumannii in Brazil: a case report. J Antimicrob Chemother. 2011;66(2):452–454.
  • De Sá Cavalcanti FL, Almeida ACS, Vilela MA, et al. Emergence of extensively drug-resistant OXA-72-producing acinetobacter baumannii in Recife, Brazil: risk of clonal dissemination? Diagn Microbiol Infect Dis. 2013;77(3):250–251.
  • Montealegre MC, Maya JJ, Correa A, et al. First identification of OXA-72 carbapenemase from acinetobacter pittii in Colombia. Antimicrob Agents Chemother. 2012;56(7):3996–3998.
  • Saavedra SY, Cayô R, Gales AC, et al. Early dissemination of OXA-72-producing acinetobacter baumannii strain in Colombia: a case report. Braz J Infect Dis. 2014;18(6):678–680.
  • Brown S, Young HK, Amyes SGB. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of acinetobacter baumannii from Argentina. Clin Microbiol Infect. 2005;11(1):15–23.
  • Coelho J, Woodford N, Afzal-Shah M, et al. Occurrence of OXA-58-like carbapenemases in acinetobacter spp. collected over 10 years in three continents. Antimicrob Agents Chemother. 2006;50(2):756–758.
  • Fernández Colón E, Bustamante García Z, Zamora Balderrama J, et al. Determining carbapenemases and its relationship to genetic structures in clinical isolates of acinetobacter baumannii at hospitals in the city of Cochabamba. Biofarbo. 2009;17(1):30–38.
  • Sevillano E, Fernández E, Bustamante Z, et al. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing acinetobacter baumannii isolates in Bolivia. J Med Microbiol. 2012;61(Pt 1):80–84.
  • Higgins PG, Pérez-Llarena FJ, Zander E, et al. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57(5):2121–2126.
  • Hamouda A, Evans BA, Towner KJ, et al. Characterization of epidemiologically unrelated acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of blaOXA-51-like genes. J Clin Microbiol. 2010;48(7):2476–2483.
  • Figueiredo S, Poirel L, Papa A, et al. Overexpression of the naturally occurring blaOXA-51 gene in acinetobacter baumannii mediated by novel insertion sequence ISAba9. Antimicrob Agents Chemother. 2009;53(9):4045–4047.
  • Héritier C, Poirel L, Fournier P-E, et al. Characterization of the naturally occurring oxacillinase of acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(10):4174–4179.
  • Poirel L, Marqué S, Héritier C, et al. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(1):202–208.
  • Cayô R, Rodrigues-Costa F, Pereira Matos A, et al. Old clinical isolates of acinetobacter seifertii in Brazil producing OXA-58. Antimicrob Agents Chemother. 2016;60(4):2589–2591.
  • Salazar De Vegas EZ, Nieves B, Ruiz M, et al. Molecular epidemiology and characterization of resistance mechanisms to various antimicrobial agents in acinetobacter baumannii isolated in Mérida, Venezuela. Med Sci Monit. 2007;13(4):BR89–94.
  • Poirel L, Héritier C, Tolün V, et al. Emergence of oxacillinase-mediated resistance to imipenem in klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15–22.
  • Lascols C, Peirano G, Hackel M, et al. Surveillance and molecular epidemiology of klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother. 2013;57(1):130–136.
  • Vanegas JM, Ospina WP, Higuita-Gutiérrez LF, et al. First reported case of an OXA-48-producing isolate from a Colombian patient. J Glob Antimicrob Resist. 2016;6:67–68.
  • Poirel L, Castanheira M, Carrër A, et al. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob Agents Chemother. 2011;55(6):2546–2551.
  • Gomez S, Pasteran F, Faccone D, et al. Intrapatient emergence of OXA-247: a novel carbapenemase found in a patient previously infected with OXA-163-producing klebsiella pneumoniae. Clin Microbiol Infect. 2013;19(5):E233–5.
  • Sampaio JLM, Ribeiro VB, Campos JC, et al. Detection of OXA-370, an OXA-48-related class D β-lactamase, in enterobacter hormaechei from Brazil. Antimicrob Agents Chemother. 2014;58(6):3566–3567.
  • Pereira PS, Borghi M, De Araújo CFM, et al. Clonal dissemination of OXA-370-producing klebsiella pneumoniae in Rio de Janeiro, Brazil. Antimicrob Agents Chemother. 2015;59(8):4453–4456.
  • Higgins PG, Poirel L, Lehmann M, et al. OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(12):5035–5038.
  • Gionco B, Pelayo JS, Venancio EJ, et al. Detection of OXA-231, a new variant of blaOXA-143, in acinetobacter baumannii from Brazil: a case report. J Antimicrob Chemother. 2012;67(10):2531–2532.
  • Zander E, Bonnin RA, Seifert H, et al. Characterization of blaOXA-143 variants in acinetobacter baumannii and acinetobacter pittii. Antimicrob Agents Chemother. 2014;58(5):2704–2708.
  • Girlich D, Damaceno QS, Oliveira AC, et al. OXA-253, a variant of the carbapenem-hydrolyzing class D β-lactamase OXA-143 in Acinetobacter baumannii. Antimicrob Agents Chemother. 2014;58(5):2976–2976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.