1,839
Views
84
CrossRef citations to date
0
Altmetric
Review

Ceftolozane/tazobactam: place in therapy

, , , , , , , , , , & show all
Pages 307-320 | Received 18 Dec 2017, Accepted 28 Feb 2018, Published online: 09 Mar 2018

References

  • Pitout JD, Laupland KB. Extended-spectrum b-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–166.
  • Paterson DL, Hujer KM, Hujer AM, et al. International Klebsiella Study Group. Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother. 2003;47:3554–3560.
  • Tumbarello M, Repetto E, Trecarichi EM, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect. 2011;139:1740–1749.
  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2016. Atlanta (GA): Centers for Disease Control and Prevention. [cited 2017 Oct 30]. Available from: http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
  • Bassetti M, Poulakou G, Ruppe E, et al. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med. 2017;43:1464–1475. DOI: 10.1007/s00134-017-4878-x.
  • Zilberberg MD, Shorr AF, Micek ST, et al. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18:596.
  • Marston HD, Dixon DM, Knisely JM, et al. Antimicrobial resistance. JAMA. 2016;316:1193–1204.
  • Giacobbe DR, Del Bono V, Trecarichi EM, et al. Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 2015;21:1106.e1–8.
  • Tamma PD, Rodriguez-Bano J. The use of noncarbapenem β-lactams for the treatment of extended-spectrum β-lactamase infections. Clin Infect Dis. 2017;64:972–980.
  • Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23:704–712.
  • U.S. Food and Drug Administration. Zerbaxa ®. Full prescribing information. [cited 2017 Oct 30]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206829lbl.pdf
  • European Medicines Agency. Zerbaxa ®. Annex I. Summary of product characteristics. [cited 2017 Oct 30]. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003772/WC500194595.pdf
  • Moya B, Zamorano L, Juan C, et al. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:3933–3937.
  • Murano K, Yamanaka T, Toda A, et al. Structural requirements for the stability of novel cephalosporins to AmpC beta-lactamase based on 3D-structure. Bioorg Med Chem. 2008;16:2261–2275.
  • Takeda S, Ishii Y, Hatano K, et al. Stability of FR264205 against AmpC beta-lactamase of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2007;30:443–445.
  • Moyá B, Beceiro A, Cabot G, et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56:4771–4778.
  • Castanheira M, Mills JC, Farrell DJ, et al. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother. 2014;58:6844–6850.
  • Moyá B, Zamorano L, Juan C, et al. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Antimicrob Agents Chemother. 2010;54:1213–1217.
  • Riera E, Macià MD, Mena A, et al. Anti-biofilm and resistance suppression activities of CXA-101 against chronic respiratory infection phenotypes of Pseudomonas aeruginosa strain PAO1. J Antimicrob Chemother. 2010;65:1399–1404.
  • Velez Perez AL, Schmidt-Malan SM, Kohner PC, et al. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa in the planktonic and biofilm states. Diagn Microbiol Infect Dis. 2016;85:356–359.
  • Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase producing Enterobacteriaceae. J Antimicrob Chemother. 2010;65:1972–1974.
  • Sader HS, Rhomberg PR, Farrell DJ, et al. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011;55:2390–2394.
  • Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs. 2014;74:31–51.
  • Mazer DM, Young C, Kalikin LM, et al. In vitro activity of ceftolozane-tazobactam and other antimicrobial agents against Burkholderia cepacia complex and Burkholderia gladioli. Antimicrob Agents Chemother. 2017;61:e00766–17.
  • Livermore DM, Mushtaq S, Meunier D, et al. Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles. J Antimicrob Chemother. 2017;72:2278–2289.
  • Armstrong ES, Farrell DJ, Palchak M, et al. In vitro activity of ceftolozane-tazobactam against anaerobic organisms identified during the ASPECT-cIAI Study. Antimicrob Agents Chemother. 2015;60:666–668.
  • Gonzalez MD, Wallace MA, Hink T, et al. Ceftolozane-tazobactam activity against phylogenetically diverse Clostridium difficile strains. Antimicrob Agents Chemother. 2015;59:7084–7085.
  • Shortridge D, Castanheira M, Pfaller MA, et al. Ceftolozane-tazobactam activity against Pseudomonas aeruginosa clinical isolates from U.S. hospitals: report from the PACTS antimicrobial surveillance program, 2012 to 2015. Antimicrob Agents Chemother. 2017;61:e00465–17.
  • Pfaller MA, Bassetti M, Duncan LR, et al. Ceftolozane/tazobactam activity against drug-resistant enterobacteriaceae and Pseudomonas aeruginosa causing urinary tract and intraabdominal infections in Europe: report from an antimicrobial surveillance programme (2012–15). J Antimicrob Chemother. 2017;72:1386–1395.
  • Pfaller MA, Shortridge D, Sader HS, et al. Ceftolozane-tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in Latin America: report from an antimicrobial surveillance program (2013–2015). Braz J Infect Dis. 2017;21:627–637.
  • Pfaller MA, Shortridge D, Sader HS, et al. Ceftolozane-tazobactam activity against drug-resistant enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in Australia and New Zealand: report from an antimicrobial surveillance program (2013–2015). J Glob Antimicrob Resist. 2017;10:186–194.
  • Seifert H, Körber-Irrgang B, Kresken M. In-vitro activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and enterobacteriaceae isolates recovered from hospitalized patients in Germany. Int J Antimicrob Agents. 2017. DOI:10.1016/j.ijantimicag.2017.06.024
  • Giani T, Arena F, Pollini S, et al. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J Antimicrob Chemother. 2017;73:664–671.
  • Grupper M, Sutherland C, Nicolau DP. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob Agents Chemother. 2017;61:e00875–17.
  • Zamorano L, Juan C, Fernández-Olmos A, et al. Activity of the new cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa isolates from chronically-infected cystic fibrosis patients. Clin Microbiol Infect. 2010;16:1482–1487.
  • Kuti JL, Pettit RS, Neu N, et al. Microbiological activity of ceftolozane/tazobactam, ceftazidime, meropenem, and piperacillin/tazobactam against Pseudomonas aeruginosa isolated from children with cystic fibrosis. Diagn Microbiol Infect Dis. 2015;83:53–55.
  • Grohs P, Taieb G, Morand P, et al. VitroActivity of ceftolozane-tazobactam against multidrug-resistant nonfermenting gram-negative bacilli Isolated from patients with cystic fibrosis. Antimicrob Agents Chemother. 2017;61:e02688–16.
  • Shortridge D, Pfaller MA, Castanheira M, et al. Antimicrobial activity of ceftolozane-tazobactam tested against enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2013–2016) as part of the surveillance program: program to assess ceftolozane-tazobactam susceptibility. Microb Drug Resist. 2017. DOI:10.1089/mdr.2017.0266
  • Fraile-Ribot PA, Mulet X, Cabot G, et al. In vivo emergence of resistance to novel cephalosporin-β-Lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 β-lactamase (OXA-539) in sequence type 235 Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61:e01117–17.
  • Schaumburg F, Bletz S, Mellmann A, et al. Susceptibility of MDR Pseudomonas aeruginosa to ceftolozane/tazobactam and comparison of different susceptibility testing methods. J Antimicrob Chemother. 2017;72:3079–3084.
  • Cabot G, Bruchmann S, Mulet X, et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58:3091–3099.
  • Berrazeg M, Jeannot K, Ntsogo Enguéné VY, et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015;59:6248–6255.
  • Haidar G, Philips NJ, Shields RK, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65:110–120.
  • MacVane SH, Pandey R, Steed LL, et al. Emergence of ceftolozane-tazobactam resistant Pseudomonas aeruginosa during treatment is mediated by a single AmpC structural mutation. Antimicrob Agents Chemother. 2017;61:e01183–17.
  • Clinical and Laboratory Standards Institute. M100-S27. Performance standards for antimicrobial susceptibility testing: 27th informational supplement. Wayne (PA): Clinical and Laboratory Standards Institute; 2017.
  • EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 7.1, 2017. [cited 2017 Oct 30]. Available from: http://www.eucast.org/clinical_breakpoints/
  • Flynt LK, Veve MP, Samuel LP, et al. Comparison of Etest to broth microdilution for testing of susceptibility of Pseudomonas aeruginosa to ceftolozane-tazobactam. J Clin Microbiol. 2017;55:334–335.
  • Cho JC, Fiorenza MA, Estrada SJ. Ceftolozane/tazobactam: a novel cephalosporin/beta-lactamase inhibitor combination. Pharmacotherapy. 2015;35:701–715.
  • Sucher AJ, Chahine EB, Cogan P, et al. Ceftolozane/tazobactam: a new cephalosporin and beta-lactamase inhibitor combination. Ann Pharmacother. 2015;49:1046–1056.
  • Wise R, Logan M, Cooper M, et al. Pharmacokinetics and tissue penetration of tazobactam administered alone and with piperacillin. Antimicrob Agents Chemother. 1991;35:1081–1084.
  • Wooley M, Miller B, Krishna G, et al. Impact of renal function on the pharmacokinetics and safety of ceftolozane-tazobactam. Antimicrob Agents Chemother. 2014;58:2249–2255.
  • Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel beta-lactam/beta-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46:266–271.
  • Monogue ML, Stainton SM, Baummer-Carr A, et al. Pharmacokinetics and tissue penetration of ceftolozane/tazobactam in diabetic patients with lower limb infections and healthy adult volunteers. Antimicrob Agents Chemother. 2017;61:e01449–17.
  • Bremmer DN, Nicolau DP, Burcham P, et al. Ceftolozane/tazobactam pharmacokinetics in a critically ill adult receiving continuous renal replacement therapy. Pharmacotherapy. 2016;36:e30–e33.
  • Kuti JL, Ghazi IM, Quintiliani R Jr, et al. Treatment of multidrug-resistant Pseudomonas aeruginosa with ceftolozane/tazobactam in a critically ill patient receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2016;48:342–343.
  • Craig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum beta-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1577–1582.
  • MacGowan AP, Noel AR, Tomaselli SG, et al. Pharmacodynamics of ceftolozane plus tazobactam studied in an in vitro pharmacokinetic model of infection. Antimicrob Agents Chemother. 2015;60:515–521.
  • VanScoy B, Mendes RE, Nicasio AM, et al. Pharmacokinetics-pharmacodynamics of tazobactam in combination with ceftolozane in an in vitro infection model. Antimicrob Agents Chemother. 2013;57:2809–2814.
  • VanScoy B, Mendes RE, McCauley J, et al. Pharmacological basis of beta-lactamase inhibitor therapeutics: tazobactam in combination with Ceftolozane. Antimicrob Agents Chemother. 2013;57:5924–5930.
  • Soon RL, Lenhard JR, Bulman ZP, et al. Combinatorial pharmacodynamics of ceftolozane-tazobactam against genotypically defined beta-lactamase-producing escherichia coli: insights into the pharmacokinetics/pharmacodynamics of beta-lactam-beta-lactamase inhibitor combinations. Antimicrob Agents Chemother. 2016;60:1967–1973.
  • Melchers MJ, Mavridou E, van Mil AC, et al. Pharmacodynamics of ceftolozane combined with tazobactam against enterobacteriaceae in a neutropenic mouse thigh model. Antimicrob Agents Chemother. 2016;60:7272–7279.
  • Chandorkar G, Xiao A, Mouksassi MS, et al. Population pharmacokinetics of ceftolozane/tazobactam in healthy volunteers, subjects with varying degrees of renal function and patients with bacterial infections. J Clin Pharmacol. 2015;55:230–239.
  • Xiao AJ, Caro L, Popejoy MW, et al. PK/PD target attainment with ceftolozane/tazobactam using monte carlo simulation in patients with various degrees of renal function, including augmented renal clearance and end-stage renal disease. Infect Dis Ther. 2017;6:137–148.
  • Xiao AJ, Miller BW, Huntington JA, et al. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol. 2016;56:56–66.
  • Chandorkar G, Huntington JA, Gotfried MH, et al. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother. 2012;67:2463–2469.
  • Monogue ML, Pettit RS, Muhlebach M, et al. Population pharmacokinetics and safety of ceftolozane-tazobactam in adult cystic fibrosis patients admitted with acute pulmonary exacerbation. Antimicrob Agents Chemother. 2016;60:6578–6584.
  • VanScoy BD, Mendes RE, Castanheira M, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–6031.
  • Soon RL, Lenhard JR, Bulman ZP, et al. In vitro pharmacodynamic evaluation of ceftolozane/tazobactam against beta-lactamase-producing Escherichia coli in a hollow-fibre infection model. Int J Antimicrob Agents. 2017;49:25–30.
  • Natesan S, Pai MP, Lodise TP. Determination of alternative ceftolozane/tazobactam dosing regimens for patients with infections due to Pseudomonas aeruginosa with MIC values between 4 and 32 mg/L. J Antimicrob Chemother. 2017;72:2813–2816.
  • Thabit AK, Hamada Y, Nicolau DP. Physical compatibility of ceftolozane-tazobactam with selected i.v. drugs during simulated Y-site administration. Am J Health Syst Pharm. 2017;74:e47–e54.
  • Solomkin J, Hershberger E, Miller B, et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis. 2015;60:1462–1471.
  • Wagenlehner FM, Umeh O, Steenbergen J, et al. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385:1949–1956.
  • Lucasti C, Hershberger E, Miller B, et al. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob Agents Chemother. 2014;58:5350–5357.
  • Miller B, Popejoy MW, Hershberger E, et al. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob Agents Chemother. 2016;60:4387–4390.
  • Huntington JA, Sakoulas G, Umeh O, et al. Efficacy of ceftolozane/tazobactam versus levofloxacin in the treatment of complicated urinary tract infections (cUTIs) caused by levofloxacin-resistant pathogens: results from the ASPECT-cUTI trial. J Antimicrob Chemother. 2016;71:2014–2021.
  • Popejoy MW, Paterson DL, Cloutier D, et al. Efficacy of ceftolozane/tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing E.coli and K. pneumoniae: a pooled analysis of Phase 3 clinical trials. J Antimicrob Chemother. 2017;72:268–272.
  • Popejoy MW, Long J, Huntington JA. Analysis of patients with diabetes and complicated intra-abdominal infection or complicated urinary tract infection in phase 3 trials of ceftolozane/tazobactam. BMC Infect Dis. 2017;17:316.
  • Kullar R, Wagenlehner FM, Popejoy MW, et al. Does moderate renal impairment affect clinical outcomes in complicated intra-abdominal and complicated urinary tract infections? Analysis of two randomized controlled trials with ceftolozane/tazobactam. J Antimicrob Chemother. 2017;72:900–905.
  • FDA Drug Safety Communication: FDA cautions about dose confusion and medication errors for antibacterial drug Zerbaxa (ceftolozane and tazobactam). [cited 2017 Oct 15]. Available from: https://www.fda.gov/Drugs/DrugSafety/ucm445919.htm
  • Munita JM, Aitken SL, Miller WR, et al. Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2017;65:158–161.
  • Giacobbe DR, Del Bono V, Mikulska M, et al. Impact of a mixed educational and semi-restrictive antimicrobial stewardship project in a large teaching hospital in Northern Italy. Infection. 2017;45:849–856.
  • Watkins RR, Deresinski S. Using β-lactam/β-lactamase inhibitors for infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae to slow the emergence of carbapenem-resistant Enterobacteriaceae. Expert Rev Anti Infect Ther. 2017;15:893–895.
  • Gutierrez-Gutierrez B, Perez-Galera S, Salamanca E, et al. A multinational, preregistered cohort study of beta-lactam/beta-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-beta-lactamase-producing enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:4159–4169.
  • Kim A, Sutherland CA, Kuti JL, et al. Optimal dosing of piperacillin-tazobactam for the treatment of Pseudomonas aeruginosa infections: prolonged or continuous infusion? Pharmacotherapy. 2007;27:1490–1497.
  • Tamma PD, Han JH, Rock C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin Infect Dis. 2015;60:1319–1325.
  • Ofer-Friedman H, Shefler C, Sharma S, et al. Carbapenems versus piperacillin-tazobactam for bloodstream infections of nonurinary source caused by extended- spectrum beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36:981–985.
  • Kauf TL, Prabhu VS, Medic G, et al. Cost-effectiveness of ceftolozane/tazobactam compared with piperacillin/tazobactam as empiric therapy based on the in-vitro surveillance of bacterial isolates in the United States for the treatment of complicated urinary tract infections. BMC Infect Dis. 2017;17:314.
  • Prabhu V, Foo J, Ahir H, et al. Cost-effectiveness of ceftolozane/tazobactam plus metronidazole compared with piperacillin/tazobactam as empiric therapy for the treatment of complicated intra-abdominal infections based on the in-vitro surveillance of bacterial isolates in the UK. J Med Econ. 2017;20:840–849.
  • Kim C, Prasad V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: an analysis of 5 years of US Food and Drug Administration approvals. JAMA Intern Med. 2015;175:1992–1994.
  • Davis C, Naci H, Gurpinar E, et al. Availability of evidence on overall survival and quality of life benefits of cancer drugs approved by the European Medicines Agency: retrospective cohort study of drug approvals from 2009–2013. BMJ. 2017;359:j4530.
  • Antimicrobial resistance surveillance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015. Stockholm: ECDC; 2017 [cited 2017 Oct 30]. Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf
  • Castón JJ, De la Torre Á, Ruiz-Camps I, et al. Salvage therapy with ceftolozane-tazobactam for multidrug-resistant Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2017;61:e02136–16.
  • Xipell M, Bodro M, Marco F, et al. Successful treatment of three severe MDR or XDR Pseudomonas aeruginosa infections with ceftolozane/tazobactam. Future Microbiol. 2017;12:1323–1326.
  • Gentile I, Buonomo AR, Maraolo AE, et al. Successful treatment of post-surgical osteomyelitis caused by XDR Pseudomonas aeruginosa with ceftolozane/tazobactam monotherapy. J Antimicrob Chemother. 2017;72:2678–2679.
  • Dinh A, Davido B, Calin R, et al. Ceftolozane/tazobactam for febrile UTI due to multidrug-resistant Pseudomonas aeruginosa in a patient with neurogenic bladder. Spinal Cord Ser Cases. 2017;3:17019.
  • Castaldo N, Givone F, Peghin M, et al. Multidrug-resistant Pseudomonas aeruginosa skin and soft-tissue infection successfully treated with ceftolozane/tazobactam. J Glob Antimicrob Resist. 2017;9:100–102.
  • Dinh A, Wyplosz B, Kernéis S, et al. Use of ceftolozane/tazobactam as salvage therapy for infections due to extensively drug-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents. 2017;49:782–783.
  • Aye C, Williams M, Horvath R. Multidrug resistant pseudomonas mycotic pseudoaneurysm following cardiac transplant bridged by ventricular assistant device. Case Rep Infect Dis. 2017;2017:1402320.
  • Kurtzhalts KE, Mergenhagen KA, Manohar A, et al. Successful treatment of multidrug-resistant Pseudomonas aeruginosa pubic symphysis osteomyelitis with ceftolozane/tazobactam. BMJ Case Rep. 2017 Mar 31;2017. pii: bcr2016217005. doi: 10.1136/bcr-2016-217005.
  • Álvarez Lerma F, Muñoz Bermudez R, Grau S, et al. Ceftolozane-tazobactam for the treatment of ventilator-associated infections by colistin-resistant Pseudomonas aeruginosa. Rev Esp Quimioter. 2017;30:224–228.
  • Jones BM, Smith B, Bland CM. Use of continuous-infusion ceftolozane/tazobactam in a multidrug-resistant pseudomonas aeruginosa urinary tract infection in the outpatient setting. Ann Pharmacother. 2017;51:715–716.
  • Sousa Dominguez A, Perez-Rodríguez MT, Nodar A, et al. Successful treatment of MDR Pseudomonas aeruginosa skin and soft-tissue infection with ceftolozane/tazobactam. J Antimicrob Chemother. 2017;72:1262–1263.
  • Gangcuangco LM, Clark P, Stewart C, et al. Persistent bacteremia from Pseudomonas aeruginosa with in vitro resistance to the novel antibiotics ceftolozane-tazobactam and ceftazidime-avibactam. Case Rep Infect Dis. 2016;2016:1520404.
  • Hernández-Tejedor A, Merino-Vega CD, Martín-Vivas A, et al. Successful treatment of multidrug-resistant Pseudomonas aeruginosa breakthrough bacteremia with ceftolozane/tazobactam. Infection. 2017;45:115–117.
  • Vickery SB, McClain D, Wargo KA. Successful use of ceftolozane-tazobactam to treat a pulmonary exacerbation of cystic fibrosis caused by multidrug-resistant Pseudomonas aeruginosa. Pharmacotherapy. 2016;36:e154–e159.
  • Jolliff JC, Ho J, Joson J, et al. Treatment of polymicrobial osteomyelitis with ceftolozane-tazobactam: case report and sensitivity testing of isolates. Case Rep Infect Dis. 2016;2016:1628932.
  • Aitken SL, Kontoyiannis DP, DePombo AM, et al. Use of ceftolozane/tazobactam in the treatment of multidrug-resistant Pseudomonas aeruginosa bloodstream infection in a pediatric leukemia patient. Pediatr Infect Dis J. 2016;35:1040–1042.
  • Patel UC, Nicolau DP, Sabzwari RK. Successful treatment of multi-drug resistant pseudomonas aeruginosa bacteremia with the recommended renally adjusted ceftolozane/tazobactam regimen. Infect Dis Ther. 2016;5:73–79.
  • Gelfand MS, Cleveland KO. Ceftolozane/Tazobactam therapy of respiratory infections due to multidrug-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2015;61:853–855.
  • Peghin M, Maiani M, Castaldo N, et al. Ceftolozane/tazobactam for the treatment of MDR Pseudomonas aeruginosa left ventricular assist device infection as a bridge to heart transplant. Infection. 2017. DOI:10.1007/s15010-017-1086-0
  • Stokem K, Zuckerman JB, Nicolau DP, et al. Use of ceftolozane-tazobactam in a cystic fibrosis patient with multidrug-resistant Pseudomonas infection and renal insufficiency. Respir Med Case Rep. 2017;23:8–9.
  • Dietl B, Sánchez I, Arcenillas P, et al. Ceftolozane/tazobactam in the treatment of osteomyelitis and skin and soft tissue infections due to extensively drug-resistant Pseudomonas aeruginosa: clinical and microbiological outcomes. Int J Antimicrob Agents. 2017. DOI:10.1016/j.ijantimicag.2017.11.003
  • Leuthner KD, Kullar R, Jayakumar B, et al. Real-world evaluation of Ceftolozane/Tazobactam (C/T) use and clinical outcomes at an academic medical center in las vegas. Open Forum Infect Dis. 2017;4:S296–S297.
  • Pogue JM, Puzniak L, Merchant S, et al. Real-world analysis of prescribing patterns and susceptibility of Ceftolozane/Tazobactam (C/T) treatment using an Electronic Medical Record (EMR) database in the United States. Open Forum Infect Dis. 2017;4:S287–S288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.