593
Views
1
CrossRef citations to date
0
Altmetric
Review

Current anti-biofilm strategies and potential of antioxidants in biofilm control

ORCID Icon, , , &
Pages 855-864 | Received 29 Aug 2018, Accepted 10 Oct 2018, Published online: 17 Oct 2018

References

  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575.
  • Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013;14(9):18488–18501.
  • Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174(14):2225–2236.
  • Bjarnsholt T, Alhede M, Alhede M, et al. The in vivo biofilm. Trends Microbiol. 2013;21(9):466–474.
  • Wu H, Moser C, Wang H-Z, et al. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1–7.
  • Gambino M, Cappitelli F. Mini review: biofilm responses to oxidative stress. Biofouling. 2016;32(2):167–178.
  • Asker D, Awad T, Baker P et al. Enzyme immobilization on biomaterial surfaces for prevention of pseudomonas aeruginosa biofilms. Frontiers in Bioengineering and Biotechnology Conference Abstract. 10th World Biomaterials Congress. 2016:131.
  • Harding JL, Reynolds MM. Combating medical device fouling. Trends Biotechnol. 2014;32(3):140–146.
  • Liu X, Tong W, Wu Z, et al. Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Adv. 2013;3(14):4716–4722.
  • Palumbo FS, Volpe AB, Cusimano MG, et al. A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces. Int J Pharm. 2015;478(1):70–77.
  • Hazan R, Que YA, Maura D, et al. Auto poisoning of the respiratory chain by a quorum-sensing regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol. 2016;26(2):195–206.
  • Kalia VC. Quorum sensing inhibitors: an overview. Biotechnol Adv. 2013;31(2):224–245.
  • Klare W, Das T, Ibugo A, et al. Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome. Antimicrob Agents Chemother. 2016;60(8):4539–4551.
  • Buhren BA, Schrumpf H, Hoff NP, et al. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res. 2016;21(5):1–7.
  • Ghafoor A, Jordens Z, Rehm HA. Role of PelF polysaccharide biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol. 2013;79(9):2968–2978.
  • Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Lett. 2012;36(4):893–916.
  • Junter G-A, Thebault P, Lebrun L. Polysaccharide-based antibiofilm surfaces. Acta Biomater. 2016;30:13–25.
  • Francolini I, Donelli G. Prevention and control of biofilm‐based medical‐device‐related infections. FEMS Immunol Med Microbiol. 2010;59(3):227–238.
  • Raad I, Mohamed JA, Reitzel RA, et al. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother. 2012;56(2):935–941.
  • Jamal MA, Rosenblatt JS, Hachem RY, et al. Prevention of biofilm colonization by gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob Agents Chemother. 2014;58(2):1179–1182.
  • Jamal MA, Hachem RY, Rosenblatt J, et al. In vivo biocompatibility and in vitro efficacy of antimicrobial gendine-coated central catheters. Antimicrob Agents Chemother. 2015;59(9):5611–5618.
  • Bonez PC, Dos Santos Alves CF, Dalmolin TV, et al. Chlorhexidine activity against bacterial biofilms. Am J Infect Control. 2013;41(12):e119–e122.
  • Traboulsi RS, Mukherjee PK, Chandra J, et al. Gentian violet exhibits activity against biofilms formed by oral candida isolates obtained from HIV-infected patients. Antimicrob Agents Chemother. 2011;55:3043–3045.
  • Warren DK, Prager M, Munigala S, et al. Prevalence of qacA/B genes and mupirocin resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates in the setting of chlorhexidine bathing without mupirocin. Infect Control Hosp Epidemiol. 2016;37(5):590–597.
  • Ho KKK, Kutty SK, Chan D, et al. Development of fimbrolides, halogenated furanones and their derivatives as antimicrobial agents. In: Ivanova E, Crawford R (eds) Antibacterial surfaces. Springer, Cham, Switzerland; 2015. p. 149–170.
  • Sharafutdinov IS, Trizna EY, Baidamshina DR, et al. Antimicrobial effects of sulfonyl derivative of 2 (5H)-furanone against planktonic and biofilm associated methicillin-resistant and-susceptible Staphylococcus aureus. Front Microbiol. 2017;8:2246.
  • Ragunath C, DiFranco K, Shanmugam M, et al. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents. Mol Oral Microbiol. 2016;31(4):329–339.
  • Kaplan JB. Biofilm matrix-degrading enzymes. In: Donelli G. (eds) Microbial biofilms. Methods in molecular biology (methods and protocols), vol 1147. Humana Press, New York, USA; 2014. p. 203–213.
  • Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17:333–340.
  • Kim H-S, Chang SW, Baek S-H, et al. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection. Int J Oral Sci. 2013;5(1):26–31.
  • Vouzara T, Koulaouzidou E, Ziouti F, et al. Combined and independent cytotoxicity of sodium hypochlorite, ethylenediaminetetraacetic acid and chlorhexidine. Int Endontic J. 2016;49(8):764–773.
  • Li Y-C, Kuan YH, Lee T-H, et al. Assessment of the cytotoxicity of chlorhexidine by employing an in vitro mammalian test system. J Dent Sci. 2014;9(2):130–135.
  • Gabrani R, Sharma G, Dang S, et al. Interplay among bacterial resistance, biofilm formation and oxidative stress for nosocomial infections. In: Rani V, Yadav U (eds) Free radicals in human health and disease. Springer, New Delhi, India; 2015. p. 369–379.
  • Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chem Toxicol. 2013;51:15–25.
  • Liu H, Xiao Y, Nie H, et al. Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol Res. 2017;204:1–8.
  • Mitchell AM, Wang W, Silhavy TJ. Novel RpoS-dependent mechanisms strengthen the envelope permeability barrier during stationary phase. J Bacteriol. 2017;199(2):e00708–00716.
  • Wang T, El Meouche I, Dunlop MJ. Bacterial persistence induced by salicylate via reactive oxygen species. Sci Rep. 2017;7:43839.
  • Broxton CN, Culotta VC. SOD enzymes and microbial pathogens: surviving the oxidative storm of infection. PLoS Pathog. 2016;12(1):e1005295.
  • Ong KS, Cheow YL, Lee SM. The role of reactive oxygen species in the antimicrobial activity of pyochelin. J Adv Res. 2017;8(4):393–398.
  • Suresh L, Kumar PSV, Poornachandra Y, et al. An efficient one-pot synthesis of thiochromeno[3,4-d]pyrimidines derivatives: inducing ROS dependent antibacterial and anti-biofilm activities. Bioorg Chem. 2016;68:159–165.
  • Sheldon JR, Yim MS, Saliba JH, et al. Role of rpoS in Escherichia coli O157: H&strain H32 biofilm development and survival. Appl Environ Microbiol. 2012;78:8331–8339.
  • Liu X, Sun X, Wu Y, et al. Oxidation-sensing regulator AbfR regulates oxidative stress responses, bacterial aggregation, and biofilm formation in Staphylococcus epidermidis. J Biol Chem. 2013;288(6):3739–3752.
  • Kulkarni R, Antala S, Wang A, et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun. 2012;80(11):3804–3881.
  • Wei Q, Minh PNL, Dotsch A, et al. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acid Res. 2012;40(10):4320–4333.
  • Rada B, Leto TL. Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol. 2013;21(2):73–81.
  • Maddula VSRK, Pierson EA, Pierson III LS. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J Bacteriol. 2008;190(8):2759–2766.
  • Wang DP, Yu JM, Dorosky RJ, et al. The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30–84. PLoS One. 2016;11(1):e0148003.
  • Wang Y, Wilks JC, Danhorn T, et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J Bacteriol. 2011;193(14):3606–3617.
  • Stewart PS, Franklin MJ, Williamson K, et al. Contribution of stress response to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2015;59(7):3838–3847.
  • Oh E, Jeon B. Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS One. 2014;9(1):e87312.
  • Feng J, Ma L, Nie J, et al. Environmental stress-induced bacterial lysis and extracellular DNA release contribute to Campylobacter jejuni biofilm formation. Appl Environ Microbiol. 2017;84:AEM–02068.
  • Roleira FMF, Tavares-da-Silva EJ, Varela CL, et al. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem. 2015;183:235–258.
  • Al-Snafi AE. Medical importance of Anthemis nobilis (Chamaemelum nobile) – a review. AJPST. 2016;6(2):89–95.
  • An K, Zhao D, Wang Z, et al. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016;197:1292–1300.
  • Doğan E, Gökmen V. Mechanism of the interaction between insoluble wheat bran and polyphenols leading to increased antioxidant capacity. Food Res Int. 2015;69:189–193.
  • Farag M, Abdel-Mageed WM, Basudan O, et al. Persicaline, a new antioxidant sulphur-containing imidazoline alkaloid from Salvadora persica roots. Molecules. 2018;23(2):483.
  • Jahurul MHA, Zaidul ISM, Ghafoor K, et al. Mango (Mangifera indica L.) by-products and their valuable components: a review. Food Chem. 2015;183:173–180.
  • Kraujalienė V, Pukalskas A, Kraujalis P, et al. Biorefining of Bergenia crassifolia L. roots and leaves by high pressure extraction methods and evaluation of antioxidant properties and main phytochemicals in extracts and plant material. Ind Crops Prod. 2016;89:390–398.
  • Olech M, Nowak R, Załuski D, et al. Hyaluronidase, acetylcholinesterase inhibiting potential, antioxidant activity, and LC-ESI-MS/MS analysis of polyphenolics of rose (Rosa rugosa Thunb.) teas and tinctures. Int J Food Prop. 2017;20(sup1):S16–S25.
  • Tan YP, Chan EWC. Antioxidant, antityrosinase and antibacterial properties of fresh and processed leaves of Anacardium occidentale and Piper betle. Food Biosci. 2014;6:17–23.
  • Zhang TT, Lu CL, Jiang JG. Antioxidant and anti-tumour evaluation of compounds identified from fruit of Amomum tsaoko Crevost et Lemaire. J Funct Foods. 2015;18:423–431.
  • Zhang J, Rui X, Wang L, et al. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control. 2014;42:125–131.
  • González‐Ortiz G, Quarles Van Ufford H, Halkes SBA, et al. New properties of wheat bran: anti‐biofilm activity and interference with bacteria quorum‐sensing systems. Environ Microbiol. 2014;16(5):1346–1353.
  • Kazemian H, Ghafourian S, Heidari H, et al. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa. Rev Soc Bras Med Trop. 2015;48(4):432–436.
  • Hasan S, Danishuddin M, Khan AU. Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol. 2015;15(1):1–14.
  • Datta S, Jana D, Maity TR, et al. Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1. Biotech. 2016;6(18):1–6.
  • Teanpaisan R, Kawsud P, Pahumunto N, et al. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J Tradit Complement Med. 2017;7(2):172–177.
  • Rahman MRT, Lou Z, Yu F, et al. Anti-quorum sensing and anti-biofilm activity of Amomum tsaoko (Amommum tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi J Biol Sci. 2017;24(2):324–330.
  • Husain FM, Ahmad I, Al-Thubiani AS, et al. Leaf extracts of Mangifera indica L. inhibit quorum sensing-regulated production of virulence factors and biofilm in test bacteria. Front Microbiol. 2017;8:727.
  • Liu Y, Xu Y, Song Q, et al. Anti-biofilm activities from Bergenia crassifolia leaves against Streptococcus mutans. Front Microbiol. 2017;8:1738.
  • Jagani S, Chelikani R, Kim D-S. Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling. 2009;25(4):321–324.
  • Syal K, Bhardwaj N, Chatterji D. Vitamin C targets (p) ppGpp synthesis leading to stalling of long-term survival and biofilm formation in Mycobacterium smegmatis. FEMS Microbiol Lett. 2017;364(1):fnw282.
  • Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554.
  • Pandit S, Ravikumar V, Abdel Haleem AM, et al. Low concentrations of vitamin C reduce the synthesis of extracellular polymers and destabilize bacterial biofilms. Front Microbiol. 2017;8:2599.
  • Das T, Kutty SK, Tavallaie R, et al. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep. 2015;5(8398):1–9.
  • Drago A, Kovacs AT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25(4):257–266.
  • Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive stress in inflammation-associated diseases and the pro-oxidant effect of antioxidant agents. Int J Mol Sci. 2017;18(10):2098.
  • Packiavathy IASV, Priya S, Pandian SK, et al. Inhibition of biofilm development of uropathogens by curcumin – an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014;148:453–460.
  • Sethupathy S, Prasath KG, Ananthi S, et al. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. J Proteomics. 2016;145:112–126.
  • Lee J-H, Park J-H, Cho HS, et al. Antibiofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling. 2013;29(5):491–499.
  • Rama-Devi K, Srinivasan R, Kannappan A, et al. In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. Biofouling. 2016;32(10):1171–1183.
  • Noumi E, Snoussi M, Merghni A, et al. Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathog. 2017;109:169–176.
  • Rajasekharan SK, Ramesh S, Satish AS, et al. Antibiofilm and anti-β-lactamase activities of burdock root extract and chlorogenic acid against Klebsiella pneumoniae. J Microbiol Biotechnol. 2017;27(3):542–551.
  • Mawang CI, Lim YY, Ong KS, et al. Identification of α‐tocopherol as a bioactive component of Dicranopteris linearis with disrupting property against pre‐formed biofilm of Staphylococcus aureus. J Appl Microbiol. 2017;123:1148–1159.
  • Gokalsin B, Aksoydan B, Erman B, et al. Reducing virulence and biofilm of Pseudomonas aeruginosa by potential quorum sensing inhibitor carotenoid: zeaxantin. Microb Ecol. 2017;74(2):466–473.
  • Del Grosso CA, McCarthy TW, Clark CL, et al. Managing redox chemistry to deter marine biological adhesion. Chem Mater. 2016;28(18):6791–6796.
  • Kaushik NK, Kaushik N, Pardeshi S, et al. Biomedical and clinical importance of mussel-inspired polymers and materials. Mar Drugs. 2015;13(11):6792–6768`6797.
  • Baschieri A, Ajvazi MD, Tonfack JFT, et al. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017;232:656–663.
  • Subramenium GA, Vijayakumar K, Pandian SK. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J Med Microbiol. 2015;64(8):879–890.
  • Duarte A, Â L, Oleastro M, et al. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control. 2016;61:115–122.
  • Manoharan RK, Lee JH, Kim YG, et al. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 2017;33(2):143–155.
  • Ren A, Liu R, Miao ZG, et al. Hydrogen‐rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol. 2017;19(2):566–583.
  • Omar A, Wright JB, Schultz G, et al. Microbial biofilms and chronic wounds. Microorganisms. 2017;5(1):9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.