982
Views
25
CrossRef citations to date
0
Altmetric
Review

Herpes simplex virus type 1 and Alzheimer’s disease: link and potential impact on treatment

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 715-731 | Received 15 Mar 2019, Accepted 12 Aug 2019, Published online: 23 Aug 2019

References

  • World Alzheimer Report. 2018. The state of art of dementia research: new frontiers. Alzheimer’s disease international. Avalaible from: https://www.alz.co.uk/research/WorldAlzheimerReport2018.pdf?2
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269.
  • Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Demen. 2011;7:280–292.
  • Kumar A, Singh A, Ekavali N. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195–203.
  • Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s disease. J Alzheimers Dis. 2016;51(4):979–984.
  • Ball MJ. Limbic predilection in Alzheimer dementia: is reactivated herpesvirus involved? Can J Neurol Sci. 1982;9(3):303–306.
  • Davis LE, Johnson RT. An explanation for the localization of herpes simplex encephalitis? Ann Neurol. 1979;5:2–5.
  • Jamieson GA, Maitland NJ, Wilcock GK, et al. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol. 1991;33:224–227.
  • Itzhaki RF, Lin WR, Shang D, et al. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet. 1997;349:241–244.
  • Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimers Dis. 2008;13:393–405.
  • Walker DG, O’Kusky JR, McGeer PL. In situ hybridization analysis for herpes simplex virus nucleic acids in Alzheimer disease. Alzheimer Dis Assoc Disord. 1989;3:123–131.
  • Olsson J, Lovheim H, Honkala E, et al. HSV presence in brains of individuals without dementia: the TASTY brain series. Dis Model Mech. 2016;9:1349–1355.
  • Baringer JR, Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. Ann Neurol. 1994;36:823–829.
  • Readhead B, Haure-Mirande JV, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99(1):64–82.e7.
  • Alonso R, Pisa D, Fernandez-Fernandez AM, et al. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front Aging Neurosci. 2018;10:159.
  • Roizman B, Whitley RJ. An inquiry into the molecular basis of HSV latency and reactivation. Annu Rev Microbiol. 2013;67:355–374.
  • Whitley R, Kimberlin DW, Prober CG. Pathogenesis and disease. In: Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press; 2007:1–1410.
  • World Health Organization. 2017. Herpes simplex virus. Avalaible from: http://www.who.int/mediacentre/factsheets/fs400/en/
  • Looker KJ, Magaret AS, May MT, et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One. 2015;10(10):e0140765.
  • Roizman B, Campadelli-Fiume G. Alphaherpes viral genes and their functions. In: Immunoprophylaxis. Cambridge: Cambridge University Press; 2007. p. 6.
  • Campadelli-Fiume G, Menotti L. Entry of alphaherpesviruses into the cell. In: human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge: Cambridge University Press; 2007:93–111.
  • Kelly BJ, Fraefel C, Cunningham AL, et al. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res. 2009;145(2):173–186.
  • Weed DJ, Nicola AV. Herpes simplex virus membrane fusion. Adv Anat Embryol Cell Biol. 2017;223:29–47.
  • Di Giovine P, Settembre EC, Bhargava AK, et al. A structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Patog. 2011;7:1–13.
  • Campadelli-Fiume G, Collins-McMillen D, Gianni T, et al. Integrins as herpesvirus receptors and mediators of the host signalosome. Annu Rev Virol. 2016;3(1):215–236.
  • Dohner K, Binz A, Glass M, et al. Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression. J Virol. 2011;85(9):4271–4283.
  • Roizman B, Zhou G, Du T. Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues. J Neurovirol. 2011;17(6):512–517.
  • Sampath P, Deluca NA. Binding of ICP4, TATA-binding protein, and RNA polymerase II to herpes simplex virus type 1 immediate-early, early, and late promoters in virus-infected cells. J Virol. 2008;82(5):2339–2349.
  • Sandri-Goldin RM. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol. 2011;6(11):1261–1277.
  • Maruzuru Y, Shindo K, Liu Z, et al. Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress. J Virol. 2014;88:7445–7454.
  • Herbring V, Baucker A, Trowitzsch S, et al. A dual inhibition mechanism of herpesviral ICP47 arresting a conformationally thermostable TAP complex. Sci Rep. 2016;6:36907.
  • Gu H. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication. World J Virol. 2016;5(1):1–13.
  • Miranda-Saksena M, Denes CE, Diefenbach RJ, et al. Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses. 2018;10(2).
  • Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013;13(4):379–393.
  • Bloom DC, Giordani NV, Kwiatkowski DL. Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta. 2010;1799:246–256.
  • Carpenter D, Hsiang C, Brown DJ, et al. Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology. 2007;369(1):12–18.
  • Valyi-Nagy T, Deshmane S, Dillner A, et al. Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia. J Virol. 1991;65:4142–4152.
  • Miranda-Saksena M, Boadle RA, Aggarwal A, et al. Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons. J Virol. 2009;83(7):3187–3199.
  • Nishiyama Y. Herpes simplex virus gene products: the accessories reflect her lifestyle well. Rev Med Virol. 2004;14(1):33–46.
  • Tognarelli EI, Palomino TF, Corrales N, et al. Herpes simplex virus evasion of early host antiviral responses. Front Cell Infect Microbiol. 2019;9:127.
  • Carpenter D, Hsiang C, Jiang X, et al. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT). J Neurovirol. 2015;21(5):568–575.
  • Shen W, Sa E Silva M, Jaber T, et al. Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol. 2009;83:9131–9139.
  • Kato A, Kawaguchi Y. Us3 protein kinase encoded by HSV: the precise function and mechanism on viral life cycle. Adv Exp Med Biol. 2018;1045:45–62.
  • Benetti L, Roizman B. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci U S A. 2004;101(25):9411–9416.
  • Benetti L, Roizman B. In transduced cells, the US3 protein kinase of herpes simplex virus 1 precludes activation and induction of apoptosis by transfected procaspase 3. J Virol. 2007;81(19):10242–10248.
  • Jerome KR, Fox R, Chen Z, et al. Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. J Virol. 1999;73(11):8950–8957.
  • Jerome KR, Chen Z, Lang R, et al. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. J Immunol. 2001;167(7):3928–3935.
  • You Y, Cheng AC, Wang MS, et al. The suppression of apoptosis by α-herpesvirus. Cell Death Dis. 2017;8(4):e2749.
  • Yu X, He S. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol J. 2016;13:77.
  • Hagglund R, Munger J, Poon AP, et al. U(S)3 protein kinase of herpes simplex virus 1 blocks caspase 3 activation induced by the products of U(S)1.5 and U(L)13 genes and modulates expression of transduced U(S)1.5 open reading frame in a cell type-specific manner. J Virol. 2002;76(2):743–754.
  • Ma Y, He B. Recognition of herpes simplex viruses: toll-like receptors and beyond. J Mol Biol. 2014;426(6):1133–1147.
  • Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317:1522–1527.
  • Johnson KE, Chikoti L, Chandran B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol. 2013;87:5005–5018.
  • Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49:567–571.
  • Johnson KE, Bottero V, Flaherty S, et al. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog. 2014;10(11):e1004503.
  • Zhang J, Liu H, Wei B. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B. 2017;18(4):277–288.
  • Wu X, Wu P, Shen Y, et al. CD8(+) resident memory T cells and viral infection. Front Immunol. 2018;9:2093.
  • St Leger AJ, Hendricks RL. CD8+ T cells patrol HSV-1-infected trigeminal ganglia and prevent viral reactivation. J Neurovirol. 2011;17(6):528–534.
  • Kalantari-Dehaghi M, Chun S, Chentoufi AA, et al. Discovery of potential diagnostic and vaccine antigens in herpes simplex virus 1 and 2 by proteome-wide antibody profiling. J Virol. 2012;86(8):4328–4339.
  • Clementi N, Cappelletti F, Criscuolo E, et al. Role and potential therapeutic use of antibodies against herpetic infections. Clin Microbiol Infect. 2017;23(6):381–386.
  • Posavad CM, Remington M, Mueller DE, et al. Detailed characterization of T cell responses to herpes simplex virus-2 in immune seronegative persons. J Immunol. 2010;184:3250–3259.
  • Jing L, Laing KJ, Dong L, et al. Extensive CD4 and CD8 T cell cross-reactivity between alphaherpesviruses. J Immunol. 2016;196(5):2205–2218.
  • Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948–2952.
  • Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 2016;13:38.
  • Alexander DE, Leib DA. Xenophagy in herpes simplex virus replication and pathogenesis. Autophagy. 2008;4:101–103.
  • Mulvey M, Camarena V, Mohr I. Full resistance of herpes simplex virus type 1-infected primary human cells to alpha interferon require both the Us11 and γ134.5 gene products. J Virol. 2004;78:10193–10196.
  • Peng W, Henderson G, Inman M, et al. The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J Virol. 2005;79:6162–6171.
  • Imai T, Koyanagi N, Ogawa R, et al. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells. PLoS One. 2013;8:e72050.
  • Rao P, Pham HT, Kulkarni A, et al. Herpes simplex virus 1 glycoprotein B and US3 collaborate to inhibit CD1d antigen presentation and NKT cell function. J Virol. 2011;85(16):8093–8104.
  • Shives KD, Tyler KL, Beckham JD. Molecular mechanisms of neuroinflammation and injury during acute viral encephalitis. J Neuroimmunol. 2017;308:102–111.
  • Lokensgard JR, Hu S, Sheng W, et al. Robust expression of TNF-α, IL-1β, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol. 2001;7:208–219.
  • Nicoll MP, Proenca JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012;26:684–705.
  • Stowe RP, Peek MK, Cutchin MP, et al. Reactivation of herpes simplex virus type 1 is associated with cytomegalovirus and age. J Med Virol. 2012;84(11):1797–1802.
  • Martin C, Aguila B, Araya P, et al. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J Alzheimers Dis. 2014;39:849–859.
  • Michael BD, Griffiths MJ, Granerod J, et al. The interleukin-1 balance during encephalitis is associated with clinical severity, blood-brain barrier permeability, neuroimaging changes, and disease outcome. J Infect Dis. 2016;213:1651–1660.
  • Aurelius E, Andersson B, Forsgren M, et al. Cytokines and other markers of intrathecal immune response in patients with herpes simplex encephalitis. J Infect Dis. 1994;170:678–681.
  • Knickelbein JE, Khanna KM, Yee MB, et al. Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science. 2008;322(5899):268–271.
  • Yu W, Geng S, Suo Y, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1. Cell Rep. 2018;25:2379–2389.
  • Dervillez X, Qureshi H, Chentoufi AA, et al. Asymptomatic HLA-A*02:01-restricted epitopes from herpes simplex virus glycoprotein B preferentially recall polyfunctional CD8+ T cells from seropositive asymptomatic individuals and protect HLA transgenic mice against ocular herpes. J Immunol. 2013;191:5124–5138.
  • Saresella M, Marventano I, Calabrese E, et al. A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J Alzheimers Dis. 2014;38(2):403–413.
  • Saresella M, La Rosa F, Piancone F, et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol Neurodegener. 2016;11:23.
  • Togo T, Akiyama H, Iseki E, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol. 2002;124:83–92.
  • De Chiara G, Piacentini R, Fabiani M, et al. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathog. 2019;15(3):e1007617.
  • Agostini S, Mancuso R, Baglio F, et al. A protective role for herpes simplex virus type-1-specific humoral immunity in Alzheimer’s disease. Expert Rev Anti Infect Ther. 2017;15(2):89–91.
  • Letenneur L, Peres K, Fleury H, et al. Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One. 2008;3(11):e3637.
  • Mancuso R, Baglio F, Cabinio M, et al. Titers of herpes simplex virus type 1 antibodies positively correlate with grey matter volume in Alzheimer’s disease. J Alzheimers Dis. 2014;38:741–745.
  • Mancuso R, Baglio F, Agostini S, et al. Relationship between herpes simplex virus-1-specific antibody titers and cortical brain damage in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci. 2014;6:285.
  • Agostini S, Mancuso R, Baglio F, et al. Lack of evidence for a role of HHV-6 in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis. 2015;49(1):229–235.
  • Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.
  • Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302.
  • Kobayashi N, Nagata T, Shinagawa S, et al. Increase in the IgG avidity index due to herpes simplex virus type 1 reactivation and its relationship with cognitive function in amnestic mild cognitive impairment and Alzheimer’s disease. Biochem Biophys Res Commun. 2013;430(3):907–911.
  • Agostini S, Mancuso R, Baglio F, et al. High avidity HSV-1 antibodies correlate with absence of amnestic mild cognitive impairment conversion to Alzheimer’s disease. Brain Behav Immun. 2016;58:254–260.
  • Agostini S, Mancuso R, Hernis A, et al. HSV-1-specific IgG subclasses distribution and serum neutralizing activity in Alzheimer’s disease and in mild cognitive impairment. J Alzheimers Dis. 2018;63(1):131–138.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structured to effector functions. Front Immunol. 2014;5:520.
  • Dubin G, Socolof E, Frank I, et al. Herpes simplex virus type 1 Fc receptor protects infected cells form antibody-dependent cellular cytotoxicity. J Virol. 1991;65:7046–7050.
  • Agrawal P, Nawadkar R, Ojha H, et al. Complement evasion strategies of viruses: an overview. Front Microbiol. 2017;8:1117.
  • Johansson PJ, Ota T, Tsuchiya N, et al. Studies of protein A and herpes simplex virus-1 induced FC-gamma binding specifities. Different binding patterns for IgG3 from caucasian and oriental subjects. Immunology. 1994;83:631–638.
  • Iijima N, Iwasaki A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature. 2016;533(7604):552–556.
  • Carbone I, Lazzarotto T, Ianni M, et al. Herpes virus in Alzheimer’s disease: relation to progression of the disease. Neurobiol Aging. 2014;35:122–129.
  • Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):631–639.
  • Wozniak MA, Itzhaki RF, Shipley SJ, et al. Herpes simplex virus infection causes cellular β-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007;429:95–100.
  • De Chiara G, Marcocci ME, Civitelli L, et al. APP processing induced by herpes simplex virus type 1 (HSV-1) yelds several APP fragments in human and rat neuronal cells. PloS One. 2010;5:e13989.
  • Piacentini R, Civitelli L, Ripoli C, et al. HSV-1 promotes Ca2+-mediated APP phosphorylation and Aβ accumulation in rat cortical neurons. Neurbiol Aging. 2011;32:2323.e13–2323–e26.
  • Lopez JR, Lyckman A, Oddo S, et al. Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem. 2008;105:262–271.
  • Emilsson L, Saetre P, Jazin E. Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signaling. Neurobiol Dis. 2006;21:618–625.
  • Cribbs DH, Azizeh BY, Cotman CW, et al. Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer’s A beta peptide. Biochemistry. 2000;39:5988–5994.
  • Benboudjema L, Mulvey M, Gao Y, et al. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PA1 results in the redistribution of both polypeptides. J Virol. 2003;77:9192–9203.
  • Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell. 2003;25:419–429.
  • Robinson SR, Bishop GM. Abeta as bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol Aging. 2002;23(6):1051–1072.
  • Bourgade K, Dupuis G, Frost EH, et al. Anti-viral properties of amyloid-β peptides. J Alzheimers Dis. 2016;54(3):859–878.
  • Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–622.
  • Chun W, Johnson GV. The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci. 2007;12:733–756.
  • Zambrano A, Solis L, Salvadores N, et al. Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1. J Alzheimers Dis. 2008;14:259–269.
  • Alvarez G, Aldudo J, Alonso M, et al. Hepres simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res. 2012;90:1020–1029.
  • Wozniak MA, Frost AL, Itzhaki RF. Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis. 2009;16:341–350.
  • Nixohn RA. Autophagy, amyloidogenesis and Alzheimer’s disease. J Cell Sci. 2007;120:4081–4091.
  • Santana S, Bullido MJ, Recuero M, et al. Herpes simplex virus type 1 induces an incomplete autophagic response in human neuroblastoma cells. J Alzheimers Dis. 2012;30:815–831.
  • Santana S, Recuero M, Bullido MJ, et al. Herpes simplex virus type 1 induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol Aging. 2012;33:430.e19–430.e33.
  • Scheff SW, Ansari MA, Mufson EJ. Oxidative stress and hippocamap synaptic protein levels in elderly cognivetively intact individuals with Alzheimer’s disease pathology. Neurobiol Aging. 2016;42:1–12.
  • Nucci C, Palamara AT, Ciriolo MR, et al. Imbalance in corneal redox state during herpes simplex virus 1-induced keratitis in rabbits. Effectiveness of exogenous glutathione supply. Exp Eye Res. 2000;70:215–220.
  • Meyding-Lamadè U, Haas J, Lamadè W, et al. Herpes simplex virus encephalitis: long-term comparative study of viral load and the expression of immunologic nitric oxide synthase in mouse brain tissue. Neurosci Lett. 1998;244:9–12.
  • Santana S, Sastre I, Recuero M. Oxidative stress enhances neurodegeneration markers induced by herpes simplex virus type 1 infection in human neuroblastoma cells. PLoS One. 2013;8:e75842.
  • Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 2019;218:165–184.
  • Kramer T, Enquist LW. Αherpesvirus infection disrupts mitochondrial transport in neurons. Cell Host Microbe. 2012;11:504–514.
  • Saffran HA, Pare JM, Corcoran JA, et al. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 2007;8:188–193.
  • Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.
  • Guzman-Sanchez F, Valdivieso F, Burgos JS. Aging-related neurostructural, neuropathological, and behavioral changes associated with herpes simplex type 1 brain infection in mice. J Alzheimers Dis. 2012;30:779–790.
  • Itzhaki RF, Wozniak MA. Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders. Prog Lipid Res. 2006;45(1):73–90.
  • Lambert JC, Zelenika D, Hiltunen M, et al. Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European population. Neurobiol Aging. 2011;32:756.e11–756.e15.
  • Porcellini E, Carbone I, Ianni M, et al. Alzheimer’s disease gene signature says: beware of brain viral infection. Immun Ageing. 2010;7:16.
  • Tschopp J, Chonn A, Hertig S, et al. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol. 1993;151:2159–2165.
  • Humer HP, Wang Y, Garred P, et al. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein. Immunology. 1993;79:639–647.
  • Papassotiropoulos A, Lambert JC, Wavrant-De Vrieze F, et al. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer’s disease. Neurodegener Dis. 2005;2:233–241.
  • Liu SY, Aliyari R, Chikere K, et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxhycholesterol. Immunity. 2013;38:92–105.
  • Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer – disease with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr. 2014;14:36.
  • Costa AS, Agostini S, Guerini FR, et al. Modulation of immune responses to herpes simplex virus type 1 by IFNL3 and IRF7 polymorphisms: a study in Alzheimer’s disease. J Alzheimers Dis. 2017;60:1055–1063.
  • Rathore N, Ramani SR, Pantua H, et al. Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. 2018;14:e1007427.
  • Satoh T, Arii J, Suenaga T, et al. PILRalpha is a herpes simplex virus-1 entry coreceptor that associaters with glycoprotein B. Cell. 2008;132:935–944.
  • Arosio B, Trabattoni D, Galimberti L, et al. Interleukin-10 and interleukin-6 gene polymorphisms are risk factors for Alzheimer’s disease. Neurobiol Aging. 2004;25(8):1009–1015.
  • Sing R, Kumar A, Creery WD, et al. Dysregulated expression of IFN-gamma and IL-10 and impaired IFN-gamma-mediated responses at different disease stages in patients with genital herpes simplex virus-2 infection. Clin Exp Immunol. 2003;133(1):97–107.
  • Cummings JL, Zhong K. Repackaging FDA-approved drugs for degenerative diseases: promises and challenges. Expert Rev Clin Pharmacol. 2014;7(2):161–165.
  • Mielke MM, Leoutsakos JM, Corcoran CD, et al. Effects of food and drug administration-approved medications for Alzheimer’s disease on clinical progression. Alzheimers Dement. 2012;8(3):180–187.
  • Wozniak MA, Frost AL, Preston CM, et al. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with Herpes simplex virus type 1. PLoS One. 2011;6:e25152.
  • Tzeng NS, Chung CH, Lin FH, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections – a nationwide, population – based cohort study in Taiwan. Neurotherapeutics. 2018;15(2):417–429.
  • Tsai MC, Cheng WL, Sheu JJ, et al. Increased risk of dementia following herpes zoster ophthalmicus. PLoS One. 2017;12(11):e0188490.
  • Chen VC, Wu SI, Hunag KY, et al. Herpes zoster and dementia: a nationwide population-based cohort study. J Clin Psychiatry. 2018;79(1).
  • Hussain G, Zhang L, Rasul A, et al. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: an update of recent data. Molecules. 2018;23:814.
  • Zhang X, Wang G, Gurley EC, et al. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One. 2014;9(9):e107072.
  • Kim H, Bang OY, Jung MW, et al. Neuroprotective effects of estrogen against beta-amyloid toxicity are mediated by estrogen receptors in cultured neuronal cells. Neurosci Lett. 2001;302(1):58–62.
  • Wang H, Wang H, Cheng H, et al. Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol Med Rep. 2016;13:4215–4220.
  • Choi Y, Choi JH, Lee JY, et al. Apigenin protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis. Neurochem Int. 2010;57:143–152.
  • Du K, Liu M, Zhong X, et al. Epigallocatechin gallate reduces amyloid β-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol Nutr Food Res. 2018;62(8):e1700890.
  • Thummayot S, Tocharus C, Suksamrarn A, et al. Neuroprotective effects of cyanidin against Aβ-induced oxidative and ER stress in SK-N-SH cells. Neurochem Int. 2016;101:15–21.
  • Sohanaki H, Baluchnejadmojarad T, Nikbakht F, et al. Pelargonidin improves memory deficit in amyloid β25-35 rat model of Alzheimer’s disease by inhibition of glial activation, cholinesterase, and oxidative stress. Biomed Pharmacother. 2016;83:85–91.
  • Martin C, Leyton L, Arancibia Y, et al. Modulation of the AMPK/Sirt1 axis during neuronal infection by herpes simplex virus type 1. J Alzheimers Dis. 2014;42:301–312.
  • Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med. 2011;89:667–676.
  • Faith SA, Sweet TJ, Bailey E, et al. Resveratrol suppresses nuclear factor-kappaB in herpes simplex virus infected cells. Antivir Res. 2006;72:242–251.
  • Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010–1013.
  • Han YS, Zheng WH, Bastianetto S, et al. Neuropro-tective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol. 2004;141:997–1005.
  • Wang Q, Xu J, Rottinghaus GE, et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 2002;958:439–447.
  • Sabogal-Guaqueta AM, Munoz-Manco JI, Ramirez-Pineda JR, et al. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Amsterdam: Elsevier Ltd; 2015.
  • Scuderi C, Stecca C, Valenza M, et al. Palmitoylethanolamide controls reactive gliosis and exerts neuroprotective functions in a rat model of Alzheimer’s disease. Cell Death Dis. 2014;5:e1419.
  • Bronzuoli MR, Facchinetti R, Steardo L Jr, et al. Palmitoylethanolamide dampens reactive astrogliosis and improves neuronal trophic support in a triple transgenic model of Alzheimer’s disease: in vitro and in vivo evidence. Oxid Med Cell Longev. 2018;2018:4720532.
  • Gill D, Glidden M, Dean R. Unusual side effect of acyclovir: bradycardia. Am J Emerg Med. 2017;35(3):525.e3–525.e4.
  • Raborn GW, Martel AY, Lassonde M, et al. Effective treatment of herpes simplex labialis with penciclovir cream: combined results of two trials. J Am Dent Assoc. 2002;133(3):303–309.
  • Andrei G, Topalis D, De Schutter T, et al. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyomaand papillomaviruses and non-viral induced neoplasia. Antiviral Res. 2015;114:21–46.
  • Yamamoto T, Maruyama Y, Ohashi N, et al. Hypophosphatemia predicts a failure to recover from adefovir-related renal injury after dose reduction in lamivudine-resistant hepatitis B patients. Hepatol Res. 2017;47(12):1272–1281.
  • Sansone R, Ottaviani JI, Rodriguez-Mateos A, et al. Methylxanthines enhance the effects of cocoa flavanols on cardiovascular function: randomized, double-masked controlled studies. Am J Clin Nutr. 2017;105(2):352–360.
  • Qin Y, Zhai Q, Li Y, et al. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomed Pharmacother. 2018;103:1223–1230.
  • Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311–1315.
  • Lovheim H, Norman T, Weidung B, et al. Herpes simplex virus, APOEε4, and cognitive decline in old age: results from the betula cohort. J Alzheimers Dis. 2019;67(1):211–220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.