287
Views
8
CrossRef citations to date
0
Altmetric
Review

Further understanding of Pseudomonas aeruginosa’s ability to horizontally acquire virulence: possible intervention strategies

ORCID Icon &
Pages 539-549 | Received 05 Nov 2019, Accepted 01 Apr 2020, Published online: 19 Apr 2020

References

  • Silby MW, Winstanley C, Godfrey SAC, et al. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev. 2011;35(4):652–680.
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis. 2009 Jan 1;48(1):1–12. PubMed PMID: 19035777.
  • Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev. 2002 2002/06/01/;3(2):128–134.
  • Sousa AM, Pereira MO. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens. 2014;3(3):680–703. PubMed PMID:.
  • Cross AS. What is a virulence factor? Crit Care. 2008;12(6):196. PubMed PMID: 19090973; eng.
  • Diggle SP, Whiteley M. Microbe profile: pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology. 2019 Oct 10. PubMed PMID: 31597590. DOI:10.1099/mic.0.000860.
  • Rahme LG, Stevens EJ, Wolfort SF, et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science. 1995;268(5219):1899–1902.
  • Mahajan-Miklos S, Tan M-W, Rahme LG, et al. Molecular mechanisms of bacterial virulence elucidated using a pseudomonas aeruginosa– caenorhabditis elegans pathogenesis model. Cell. 1999;96(1):47–56.
  • MBM; Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55(1):165–199. PubMed PMID: 11544353.
  • Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol. 2003 2003/02/01/;6(1):56–60.
  • Paczkowski JE, Mukherjee S, McCready AR, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017 January;24:2017.
  • Visca P, Imperi F, Lamont IL. Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol. 2007;15(1):22–30.
  • Lamont IL, Beare PA, Ochsner U, et al. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc Natl Acad Sci U S A. 2002;99(10):7072–7077. PubMed PMID: 11997446; eng.
  • Persat A, Inclan YF, Engel JN, et al. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Nat Acad Sci. 2015;112(24):7563–7568.
  • Bomberger JM, MacEachran DP, Coutermarsh BA, et al. Long-distance delivery of bacterial virulence factors by pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009;5(4):e1000382.
  • Kung VL, Ozer EA, Hauser AR. The accessory genome of pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2010;74(4):621–641. PubMed PMID: PMC3008168.
  • Morrison WD, Miller RV, Sayler GS. Frequency of F116-mediated transduction of Pseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol. 1978;36(5):724–730.
  • Monson R, Foulds I, Foweraker J, et al. The Pseudomonas aeruginosa generalized transducing phage φPA3 is a new member of the φKZ-like group of ‘jumbo’ phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients. Microbiology. 2011;157(3):859–867.
  • Stanisich V, Holloway BW. Conjugation in Pseudomonas aeruginosa. Genetics. 1969;61(2):327–339. PubMed PMID: 4980017; eng.
  • van der Zee A, Kraak WB, Burggraaf A, et al. Spread of carbapenem resistance by transposition and conjugation among pseudomonas aeruginosa [Original Research]. Front Microbiol. 2018 2018-September-05;9(2057). English. DOI:10.3389/fmicb.2018.02057.
  • Tanner WD, Atkinson RM, Goel RK, et al. Horizontal transfer of the blaNDM-1 gene to Pseudomonas aeruginosa and Acinetobacter baumannii in biofilms. FEMS Microbiol Lett. 2017;364(8). DOI:10.1093/femsle/fnx048
  • Qiu X, Kulasekara BR, Lory S. Role of horizontal gene transfer in the evolution of pseudomonas aeruginosa virulence. Genome dynam. 2009;6:126–139. PubMed PMID: 19696498; eng.
  • Doberenz S, Eckweiler D, Reichert O, et al. Identification of a pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. mBio. 2017;8(1):e02312–16.
  • Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007 Mar 23;315(5819):1709–1712. PubMed PMID: 17379808; eng.
  • van Belkum A, Soriaga LB, LaFave MC, et al. Phylogenetic distribution of CRISPR-cas systems in antibiotic-resistant pseudomonas aeruginosa. MBio. 2015 Nov 24;6(6):e01796–15. PubMed PMID: 26604259; PubMed Central PMCID: PMCPMC4669384.
  • Gophna U, Kristensen DM, Wolf YI, et al. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales. Isme J. 2015;9(9):2021–2027. PubMed PMID: 25710183; eng.
  • Du Toit A. CRISPR–Cas enhances HGT by transduction. Nature Rev Microbiol. 2018 2018/04/01;16(4):186.
  • Freschi L, Vincent AT, Jeukens J, et al. The pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol. 2018;11(1):109–120.
  • He J, Baldini RL, Déziel E, et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Nat Acad Sci. 2004;101(8):2530–2535.
  • Stover CK, Pham XQ, Erwin AL, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406(6799):959–964. 2000/08/01.
  • Winsor GL, Griffiths EJ, Lo R, et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016 Jan 4;44(D1):D646–53. PubMed PMID: 26578582; PubMed Central PMCID: PMCPMC4702867.
  • diCenzo GC, Finan TM. The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev. 2017;81(3):e00019–17.
  • Poulsen BE, Yang R, Clatworthy AE, et al. Defining the core essential genome of Pseudomonas aeruginosa. Proc Nat Acad Sci. 2019;116(20):10072–10080.
  • van Tonder AJ, Mistry S, Bray JE, et al. Defining the estimated core genome of bacterial populations using a bayesian decision model. PLoS Comput Biol. 2014;10(8):e1003788.
  • Freschi L, Vincent AT, Jeukens J, et al. The pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol. 2019 Jan 1;11(1):109–120. PubMed PMID: 30496396; PubMed Central PMCID: PMCPMC6328365.
  • Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35(5):957–976.
  • Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26(2):185–230. PubMed PMID: 23554414; eng.
  • Anonymous. Antibiotic/Antimicrobial Resistance (AR/AMR)/Biggest Threats and Data.
  • ECDC. Surveillance of antimicrobial resistance in Europe 2018. Antimicrobial resistance surveillance in Europe. Solna, Sweden: European Centre for Disease Prevention and Control; 2019.
  • Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017 May;49(5):526–535. PubMed PMID: 28163137.
  • Xu A, Zheng B, Xu YC, et al. National epidemiology of carbapenem-resistant and extensively drug-resistant Gram-negative bacteria isolated from blood samples in China in 2013. Clin Microbiol Infect. 2016 Mar;22 Suppl 1:S1–8. PubMed PMID: 26846351.
  • Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140–3145. PubMed PMID: 9501229; PubMed Central PMCID: PMC19708. eng.
  • Enright MC, Day NP, Davies CE, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000 Mar;38(3):1008–1015. PubMed PMID: 10698988; PubMed Central PMCID: PMC86325.
  • Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998 Nov;144(Pt 11):3049–3060. PubMed PMID: 9846740.
  • Reid SD, Herbelin CJ, Bumbaugh AC, et al. Parallel evolution of virulence in pathogenic Escherichia coli. Nature. 2000 Jul 6;406(6791):64–67. PubMed PMID: 10894541.
  • Curran B, Jonas D, Grundmann H, et al. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004 Dec;42(12):5644–5649. PubMed PMID: 15583294; PubMed Central PMCID: PMCPMC535286.
  • Feil EJ, Enright MC, Spratt BG. Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae. Res Microbiol. 2000 Jul-Aug;151(6):465–469. PubMed PMID: 10961460.
  • Dekker JP, Frank KM. Next-generation epidemiology: using real-time core genome multilocus sequence typing to support infection control policy. J Clin Microbiol. 2016 Dec;54(12):2850–2853. PubMed PMID: 27629902; PubMed Central PMCID: PMCPMC5121370.
  • Royer G, Fourreau F, Boulanger B, et al. Local outbreak of extended-spectrum beta-lactamase SHV2a-producing Pseudomonas aeruginosa reveals the emergence of a new specific sub-lineage of the international ST235 high-risk clone. J Hosp Infect. 2020 Jan;104(1):33–39. PubMed PMID: 31369808.
  • Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: bIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. PubMed PMID: 30345391; PubMed Central PMCID: PMCPMC6192448.
  • Kos VN, Deraspe M, McLaughlin RE, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 2015 Jan;59(1):427–436. PubMed PMID: 25367914; PubMed Central PMCID: PMC4291382.
  • Oliver A, Mulet X, López-Causapé C, et al. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22(Supplement C):41–59. 2015/07/01/.
  • Sánchez-Diener I, Zamorano L, López-Causapé C, et al. Interplay among resistance profiles, high-risk clones, and virulence in the caenorhabditis elegans pseudomonas aeruginosa infection model. Antimicrob Agents Chemother. 2017 December 1;61(12). DOI:10.1128/aac.01586-17.
  • Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015;2015:17.
  • Wendel AF, Ressina S, Kolbe-Busch S, et al. Species diversity of environmental GIM-1-producing bacteria collected during a long-term outbreak. Appl Environ Microbiol. 2016 June 15;82(12):3605–3610.
  • Mulet X, Cabot G, Ocampo-Sosa AA, et al. Biological markers of pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother. 2013 November 1;57(11):5527–5535.
  • Pastar I, Nusbaum AG, Gil J, et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One. 2013;8(2):e56846–e56846. PubMed PMID: 23451098; eng.
  • Das T, Kutty SK, Tavallaie R, et al. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation [Article]. Sci Rep. 2015 02/11/online;5:8398. https://www.nature.com/articles/srep08398#supplementary-information
  • Ryan RP, Lucey J, O’Donovan K, et al. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol. 2009;11(5):1126–1136.
  • Rashid MH, Rumbaugh K, Passador L, et al. Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Nat Acad Sci. 2000;97(17):9636–9641.
  • Pires DP, Vilas Boas D, Sillankorva S, et al. Phage Therapy: a Step Forward in the Treatment. J Virol. 2015;89(15):7449–7456.
  • Krylov VN. Chapter five - bacteriophages of pseudomonas aeruginosa: long-term prospects for use in phage therapy. In: Maramorosch K, Murphy FA, editors. Advances in virus research. Vol. 88. Amsterdam, Netherlands: Elsevier; 2014. p. 227–278.
  • Lobato-Márquez D, Díaz-Orejas R, García-del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev. 2016;40(5):592–609.
  • Hernández-Ramírez KC, Reyes-Gallegos RI, Chávez-Jacobo VM, et al. A plasmid-encoded mobile genetic element from Pseudomonas aeruginosa that confers heavy metal resistance and virulence. Plasmid. 2018;98:15–21. 2018/06/01/.
  • Gaillard M, Pernet N, Vogne C, et al. Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. Proc Nat Acad Sci. 2008;105(19):7058–7063.
  • Keen EC. Paradigms of pathogenesis: targeting the mobile genetic elements of disease. Front Cell Infect Microbiol. 2012;2:161. PubMed PMID: 23248780; eng.
  • Ouyang J, Sun F, Feng W, et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol. 2016;120(4):966–974.
  • Lee J-H, Kim Y-G, Cho MH, et al. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res. 2014;169(12):888–896. 2014/12/01/.
  • Harjai K, Kumar R, Singh S. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. Pathog Dis. 2010;58(2):161–168.
  • Kalia M, Yadav VK, Singh PK, et al. Effect of cinnamon oil on quorum sensing-controlled virulence factors and biofilm formation in pseudomonas aeruginosa. Plos One. 2015;10(8):e0135495.
  • Neidig A, Yeung ATY, Rosay T, et al. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol. 2013;13(1):77. 2013/04/09.
  • Kim S-K, Lee J-H. Biofilm dispersion in Pseudomonas aeruginosa [journal article]. J Microbiol. 2016 February 01;54(2):71–85.
  • Li Y, Heine S, Entian M, et al. NO-induced biofilm dispersion. J Bacteriol. 2013;195(16):3531–3542.
  • Sauer K, Cullen MC, Rickard AH, et al. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol. 2004;186(21):7312–7326.
  • Johansson EMV, Crusz SA, Kolomiets E, et al. Inhibition and dispersion of pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol. 2008;15(12):1249–1257. 2008/12/22/.
  • Robb AJ, Vinogradov S, Danell AS, et al. Electrochemical detection of small molecule induced Pseudomonas aeruginosa biofilm dispersion. Electrochim Acta. 2018;268:276–282. 2018/04/01/.
  • Dunne WM, Buckmire FL. Partial purification and characterization of a polymannuronic acid depolymerase produced by a mucoid strain of Pseudomonas aeruginosa isolated from a patient with cystic fibrosis. Appl Environ Microbiol. 1985;50(3):562–567.
  • Bartell PF, Orr TE, Lam GKH. Polysaccharide depolymerase associated with bacteriophage infection. J Bacteriol. 1966;92(1):56–62.
  • Bartell PF, Lam GKH, Orr TE. Purification and properties of polysaccharide depolymerase associated with phage-infected pseudomonas aeruginosa. J Biol Chem. 1968 May 10;243(9):2077–2080.
  • Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol. 2010;108(2):695–702.
  • Pires DP, Oliveira H, Melo LDR, et al. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications [journal article]. Appl Microbiol Biotechnol. 2016 March 01;100(5):2141–2151.
  • De Kievit TR. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2009;11(2):279–288.
  • Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015;6(1):26–41.
  • Spoering AL, Gilmore MS. Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol. 2006 2006/04/01/;9(2):133–137.
  • Antonova ES, Hammer BK. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol Lett. 2011;322(1):68–76.
  • Rossmann FS, Racek T, Wobser D, et al. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog. 2015;11(2):e1004653.
  • Zhang Y, Ma Q, Su B, et al. A study on the role that quorum sensing play in antibiotic-resistant plasmid conjugative transfer in Escherichia coli. Ecotoxicology. 2018;27(2):209–216.
  • Hentzer M, Wu H, Andersen JB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J. 2003;22(15):3803–3815.
  • O’Loughlin CT, Miller LC, Siryaporn A, et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Nat Acad Sci. 2013;110(44):17981–17986.
  • Kim H-S, Lee S-H, Byun Y, et al. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep. 2015;5:8656. PubMed PMID: 25728862; eng.
  • Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc Nat Acad Sci. 2017;114(1):131–135.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–320. PubMed PMID: 29144467; eng.
  • Koser CU, Holden MT, Ellington MJ, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012 Jun 14;366(24):2267–2275. PubMed PMID: 22693998; PubMed Central PMCID: PMC3715836.
  • Jaillard M, van Belkum A, Cady KC, et al. Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int J Antimicrob Agents. 2017 Aug;50(2):210–218. PubMed PMID: 28554735.
  • Witney AA, Gould KA, Pope CF, et al. Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of Pseudomonas aeruginosa. Clin Microbiol Infect. 2014 Oct;20(10):O609–18. PubMed PMID: 24422878.
  • Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. SciTotal Environ. 2013;447:345–360.
  • Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014 2014/01/01/;22(1):36–41.
  • Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158. PubMed PMID: 21845185; eng.
  • Bruchmann J, Kirchen S, Schwartz T. Sub-inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates [journal article]. Environ Sci Pollut Res. 2013 June 01;20(6):3539–3549.
  • Karkman A, Do TT, Walsh F, et al. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018;26(3):220–228. 2018/03/01/.
  • Gunathilaka GU, Tahlan V, Mafiz AI, et al. Phages in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents. 2017;50(5):678–683. 2017/11/01/.
  • Regmi C, Joshi B, Ray SK, et al. Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater [Mini Review]. Front Chem. 2018 2018-February-28;6(33). English. DOI:10.3389/fchem.2018.00033.
  • Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches. C R Chim. 2006 2006/05/01/;9(5):750–760.
  • Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010;44(10):2997–3027. 2010/05/01/.
  • Laxma Reddy PV, Kavitha B, Kumar Reddy PA, et al. TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environ Res. 2017;154:296–303. 2017/04/01/.
  • Daneshvar N, Niaei A, Akbari S, et al. Photocatalytic disinfection of water polluted by Pseudomonas aeruginosa. 2007;9(3):1–5.Global Nest J.
  • Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, et al. TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photochem Photobiol B: Biol. 2003;70(1):45–50.
  • Ratova M, Redfern J, Verran J, et al. Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Appl Catal B Environ. 2018;239:223–232. 2018/12/30/.
  • Markowska-Szczupak A, Ulfig K, Morawski AW. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catal Today. 2011 2011/07/01/;169(1):249–257.
  • Lawton LA, Robertson PKJ, Robertson RF, et al. The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis. Appl Catal B Environ. 2003;44(1):9–13. 2003/08/08/.
  • Murar M, Dhumale V. Antimicrobial potential of TiO2 nanoparticles against MDR Pseudomonas aeruginosa AU - Arora, Bindu. J Exp Nanosci. 2015 2015/07/24;10(11):819–827.
  • Ryu H, Crittenden J, Abbaszadegan M. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light AU - Gerrity, Daniel. J Environ SciHealth A. 2008 2008/07/29;43(11):1261–1270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.