466
Views
11
CrossRef citations to date
0
Altmetric
Review

Novel strategies for rapid identification and susceptibility testing of MRSA

&
Pages 759-778 | Received 08 Dec 2019, Accepted 22 Apr 2020, Published online: 13 May 2020

References

  • Ogston A. Report upon Micro-Organisms in Surgical Diseases. Br Med J. 1881;1:369.b2-375.
  • Newsom SWB. Ogston’s coccus. J Hosp Infect. 2008;70:369–372.
  • Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the Action of Penicillin. Pro Soc Exp Biol Med. 1942;51:386–389.
  • Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265–1273.
  • Jevons MP. “Celbenin” - resistant Staphylococci. Br Med J. 1961;1:124–125.
  • Neu HC. Antistaphylococcal Penicillins. Med Clin North Am. 1982;66:51–60.
  • Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus : an overview of basic and clinical research. Nat Rev Microbiol. 2019;17:203–218. .
  • Chambers HF, DeLeo FR. Waves of resistance: staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7:629–641.
  • Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31.
  • David MZ, Daum RS. Community-Associated Methicillin-Resistant Staphylococcus aureus: epidemiology and Clinical Consequences of an Emerging Epidemic. Clin Microbiol Rev. 2010;23:616–687.
  • Vandenesch F, Naimi T, Enright MC, et al. Community-Acquired Methicillin-Resistant Staphylococcus aureus Carrying Panton-Valentine Leukocidin Genes: worldwide Emergence. Emerg Infect Dis. 2003;9:978–984.
  • Otter JA, French GL. Community-associated meticillin-resistant Staphylococcus aureus: the case for a genotypic definition. J Hosp Infect. 2012;81:143–148.
  • Otter JA, French GL. Nosocomial transmission of community-associated meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2006;6:753–755.
  • Gonzalez BE, Rueda AM, Shelburne SA, et al. Community-Associated Strains of Methicillin-Resistant Staphylococccus aureus as the Cause of Healthcare-Associated Infection. Infect Control Hosp Epidemiol. 2006;27:1051–1056.
  • Devriese LA, Van Damme LR, Fameree L. Methicillin (cloxacillin)-resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl Veterinarmed B. 1972;19: 598–605.
  • Cuny C, Friedrich A, Kozytska S, et al. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int J Med Microbiol. 2010;300:109–117.
  • Barrasa-Villar JI, Aibar-Remón C, Prieto-Andrés P, et al. Impact on Morbidity, Mortality, and Length of Stay of Hospital-Acquired Infections by Resistant Microorganisms. Clin Infect Dis. 2017;65:644–652.
  • Stein RA. Methicillin-resistant Staphylococcus aureus—the new zoonosis. Inter J Infect Dis. 2009;13:299–301.
  • European Centre for Disease Prevention and Control. Antimicrobial resistance (EARS-Net). Annual epidemiological report for 2014. Stockholm: ECDC; 2018.
  • Kourtis AP, Hatfield K, Baggs J, et al. Vital Signs: epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections - United States. MMWR Morb Mortal Wkly Rep. 2019;68:214–219.
  • Albrecht VS, Limbago BM, Moran GJ, et al. Staphylococcus aureus Colonization and Strain Type at Various Body Sites among Patients with a Closed Abscess and Uninfected Controls at U.S. Emergency Departments. J Clin Microbiol. 2015;53:3478–3484.
  • Mermel LA, Cartony JM, Covington P, et al. Methicillin-Resistant Staphylococcus aureus Colonization at Different Body Sites: a Prospective, Quantitative Analysis▿. J Clin Microbiol. 2011;49:1119–1121.
  • Yang ES, Tan J, Eells S, et al. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect. 2010;16:425–431.
  • Paling FP, Olsen K, Ohneberg K, et al. Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial. Plos One. 2018;13:e0193445.
  • Scheuch M, Freiin von Rheinbaben S, Kabisch A, et al. Staphylococcus aureus colonization in hemodialysis patients: a prospective 25 months observational study. BMC Nephrol. 2019;20:153.
  • Honda H, Krauss MJ, Coopersmith CM, et al. Staphylococcus aureus nasal colonization and subsequent infection in intensive care unit patients: does methicillin resistance matter? Infect Control Hosp Epidemiol. 2010;31:584–591.
  • Macedo-Viñas M, De Angelis G, Rohner P, et al. Burden of meticillin-resistant Staphylococcus aureus infections at a Swiss University hospital: excess length of stay and costs. J Hosp Infect. 2013;84:132–137.
  • Delaney JC, Schneider-Lindner V, Brassard P, et al. Mortality after infection with methicillin-resistant Staphylococcus aureus(MRSA) diagnosed in the community. BMC Med. 2008;6:2.
  • Gould IM, Reilly J, Bunyan D, et al. Costs of healthcare-associated methicillin-resistant Staphylococcus aureus and its control. Clin Microbiol Infect. 2010;16:1721–1728.
  • Katayama Y, Ito T, Hiramatsu K. A New Class of Genetic Element, Staphylococcus Cassette Chromosome mec, Encodes Methicillin Resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2000;44:1549–1555.
  • Elements (IWG-SCC) IWG on the C of SCC. Classification of Staphylococcal Cassette Chromosome mec (SCCmec): guidelines for Reporting Novel SCCmec Elements. Antimicrob Agents Chemother. 2009;53:4961–4967.
  • Baig S, Johannesen TB, Overballe-Petersen S, et al. Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol. 2018;61:74–76.
  • Urushibara N, Aung MS, Kawaguchiya M, et al. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J Antimicrob Chemother. 2020;75:46–50.
  • Utsui Y, Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985;28:397–403.
  • García-Álvarez L, Holden MT, Lindsay H, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11:595–603.
  • Shore AC, Deasy EC, Slickers P, et al. Detection of Staphylococcal Cassette Chromosome mec Type XI Carrying Highly Divergent mecA, mecI, mecR1, blaZ, and ccr Genes in Human Clinical Isolates of Clonal Complex 130 Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:3765–3773.
  • Ballhausen B, Kriegeskorte A, Schleimer N, et al. The mecA Homolog mecC Confers Resistance against β-Lactams in Staphylococcus aureus Irrespective of the Genetic Strain Background. Antimicrob Agents Chemother. 2014;58:3791–3798.
  • Ford BA. mecC-Harboring Methicillin-Resistant Staphylococcus aureus: hiding in Plain Sight. J Clin Microbiol. 2018;56:e01549–17.
  • Becker K, van Alen S, Idelevich EA, et al. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerging Infect Dis. 2018;24:242–248.
  • Calfee DP, Salgado CD, Milstone AM, et al. Strategies to Prevent Methicillin-Resistant Staphylococcus aureus Transmission and Infection in Acute Care Hospitals: 2014 Update. Infect Control Hosp Epidemiol. 2014;35:772–796.
  • Harbarth S, Fankhauser C, Schrenzel J, et al. Universal Screening for Methicillin-Resistant Staphylococcus aureus at Hospital Admission and Nosocomial Infection in Surgical Patients. JAMA. 2008;299:1149–1157.
  • Roth VR, Longpre T, Coyle D, et al. Cost Analysis of Universal Screening vs. Risk Factor-Based Screening for Methicillin-Resistant Staphylococcus aureus (MRSA). Schildgen O, editor. PLoS ONE. 2016;11:e0159667.
  • Robotham JV, Deeny SR, Fuller C, et al. Cost-effectiveness of national mandatory screening of all admissions to English National Health Service hospitals for meticillin-resistant Staphylococcus aureus: a mathematical modelling study. Lancet Infect Dis. 2016;16:348–356.
  • Parente DM, Cunha CB, Mylonakis E, et al. The Clinical Utility of Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Screening to Rule Out MRSA Pneumonia: A Diagnostic Meta-analysis With Antimicrobial Stewardship Implications. Clin Infect Dis. 2018;67:1–7. .
  • Carr AL, Daley MJ, Givens Merkel K, et al. Clinical Utility of Methicillin-Resistant Staphylococcus aureus Nasal Screening for Antimicrobial Stewardship: A Review of Current Literature. Pharmacotherapy. 2018;38:1216–1228.
  • Chipolombwe J, Török ME, Mbelle N, et al. Methicillin-resistant Staphylococcus aureus multiple sites surveillance: a systemic review of the literature. Infect Drug Resist. 2016;9:35–42.
  • Davis MF, Hu B, Carroll KC, et al. Comparison of Culture-Based Methods for Identification of Colonization with Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus in the Context of Cocolonization. J Clin Microbiol. 2016;54:1907–1911.
  • Wendt C, Havill NL, Chapin KC, et al. Evaluation of a New Selective Medium, BD BBL CHROMagar MRSA II, for Detection of Methicillin-Resistant Staphylococcus aureus in Different Specimens. J Clin Microbiol. 2010;48:2223–2227.
  • Havill NL, Boyce JM. Evaluation of a New Selective Medium, BD BBL CHROMagar MRSA II, for Detection of Methicillin-Resistant Staphylococcus aureus in Stool Specimens. J Clin Microbiol. 2010;48:2228–2230.
  • Veenemans J, Verhulst C, Punselie R, et al. Evaluation of Brilliance MRSA 2 Agar for Detection of Methicillin-Resistant Staphylococcus aureus in Clinical Samples. J Clin Microbiol. 2013;51:1026–1027.
  • Yang H-Y, Suh J-T, Lee H-J. Evaluation of Commercial Selective Agars in Screening for Methicillin-Resistant Staphylococcus aureus. Ann Clin Lab Sci. 2010;40:252–256.
  • Dodémont M, Verhulst C, Nonhoff C, et al. Prospective Two-Center Comparison of Three Chromogenic Agars for Methicillin-Resistant Staphylococcus aureus Screening in Hospitalized Patients. J Clin Microbiol. 2015;53:3014–3016.
  • Peterson JF, Riebe KM, Hall GS, et al. Spectra MRSA, a New Chromogenic Agar Medium To Screen for Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol. 2010;48:215–219.
  • Denys GA, Renzi PB, Koch KM, et al. Three-Way Comparison of BBL CHROMagar MRSA II, MRSASelect, and Spectra MRSA for Detection of Methicillin-Resistant Staphylococcus aureus Isolates in Nasal Surveillance Cultures. J Clin Microbiol. 2013;51:202–205.
  • Morris K, Wilson C, Wilcox MH. Evaluation of chromogenic meticillin-resistant Staphylococcus aureus media: sensitivity versus turnaround time. J Hosp Infect. 2012;81:20–24.
  • Perry JD. A Decade of Development of Chromogenic Culture Media for Clinical Microbiology in an Era of Molecular Diagnostics. Clin Microbiol Rev. 2017;30:449–479.
  • Luteijn JM, Hubben GAA, Pechlivanoglou P, et al. Diagnostic accuracy of culture-based and PCR-based detection tests for methicillin-resistant Staphylococcus aureus: a meta-analysis. Clin Microbiol Infect. 2011;17:146–154.
  • Dupieux C, Kolenda C, Larsen AR, et al. Variable performance of four commercial chromogenic media for detection of methicillin-resistant Staphylococcus aureus isolates harbouring mecC. Int J Antimicrob Agents. 2017;50:263–265.
  • Stamper PD, Louie L, Wong H, et al. Genotypic and phenotypic characterization of methicillin-susceptible Staphylococcus aureus isolates misidentified as methicillin-resistant Staphylococcus aureus by the BD GeneOhm MRSA assay. J Clin Microbiol. 2011;49:1240–1244.
  • Blanc DS, Basset P, Nahimana-Tessemo I, et al. High Proportion of Wrongly Identified Methicillin-Resistant Staphylococcus aureus Carriers by Use of a Rapid Commercial PCR Assay Due to Presence of Staphylococcal Cassette Chromosome Element Lacking the mecA Gene. J Clin Microbiol. 2011;49:722–724.
  • Trouillet-Assant S, Rasigade J-P, Lustig S, et al. Ward-Specific Rates of Nasal Cocolonization with Methicillin-Susceptible and -Resistant Staphylococcus spp. and Potential Impact on Molecular Methicillin-Resistant Staphylococcus aureus Screening Tests. J Clin Microbiol. 2013;51:2418–2420.
  • Parcell B, Phillips G. Evaluation of the use of Xpert MRSA PCR Assay as a point of care test in two clinical areas: category: lesson in Microbiology & Infection Control. J Infect. 2011;63:e109.
  • Patel PA, Robicsek A, Grayes A, et al. Evaluation of multiple real-time PCR tests on nasal samples in a large MRSA surveillance program. Am J Clin Pathol. 2015;143:652–658.
  • Patel PA, Schora DM, Peterson KE, et al. Performance of the Cepheid Xpert® SA Nasal Complete PCR assay compared to culture for detection of methicillin-sensitive and methicillin-resistant Staphylococcus aureus colonization. Diagn Microbiol Infect Dis. 2014;80:32–34.
  • May L, McCann C, Brooks G, et al. Dual-site sampling improved detection rates for MRSA colonization in patients with cutaneous abscesses. Diagn Microbiol Infect Dis. 2014;80:79–82.
  • Jacqmin H, Schuermans A, Desmet S, et al. Performance of three generations of Xpert MRSA in routine practice: approaching the aim? Eur J Clin Microbiol Infect Dis. 2017;36:1363–1365.
  • Yarbrough ML, Warren DK, Allen K, et al. Multicenter Evaluation of the Xpert MRSA NxG Assay for Detection of Methicillin-Resistant Staphylococcus aureus in Nasal Swabs. J Clin Microbiol. 2018;56:e01381–17.
  • Patel PA, Ledeboer NA, Ginocchio CC, et al. Performance of the BD GeneOhm MRSA Achromopeptidase Assay for Real-Time PCR Detection of Methicillin-Resistant Staphylococcus aureus in Nasal Specimens. J Clin Microbiol. 2011;49:2266–2268.
  • Dalpke AH, Hofko M, Zimmermann S. Comparison of the BD Max Methicillin-Resistant Staphylococcus aureus (MRSA) Assay and the BD GeneOhm MRSA Achromopeptidase Assay with Direct- and Enriched-Culture Techniques Using Clinical Specimens for Detection of MRSA. J Clin Microbiol. 2012;50:3365–3367.
  • Grabsch EA, Xie S, Szczurek PB, et al. Assessment of the BD GeneOhm MRSA ACP assay using combined swabs for the detection of methicillin resistant Staphylococcus aureus (MRSA) colonisation. Pathology. 2013;45:612–614.
  • Dalpke AH, Hofko M, Stock C, et al. Evaluation of the BD Max MRSA XT assay for use with different swab types. J Clin Microbiol. 2014;52:4343–4346.
  • Lepainteur M, Delattre S, Cozza S, et al. Comparative Evaluation of Two PCR-Based Methods for Detection of Methicillin-Resistant Staphylococcus aureus (MRSA): xpert MRSA Gen 3 and BD-Max MRSA XT. J Clin Microbiol. 2015;53:1955–1958.
  • Nielsen XC, Madsen TV, Engberg J. Evaluation of Xpert MRSA Gen 3 and BD MAX MRSA XT for meticillin-resistant Staphylococcus aureus screening in a routine diagnostic setting in a low-prevalence area. J Med Microbiol. 2017;66:90–95.
  • Aydiner A, Lüsebrink J, Schildgen V, et al. Comparison of Two Commercial PCR Methods for Methicillin-Resistant Staphylococcus aureus (MRSA) Screening in a Tertiary Care Hospital. Plos One. 2012;7:e43935.
  • Peterson LR, Liesenfeld O, Woods CW, et al. Multicenter evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test as a rapid method for detection of MRSA in nasal surveillance swabs. J Clin Microbiol. 2010;48:1661–1666.
  • Yam WC, Siu GKH, Ho PL, et al. Evaluation of the LightCycler Methicillin-Resistant Staphylococcus aureus (MRSA) Advanced Test for Detection of MRSA Nasal Colonization. J Clin Microbiol. 2013;51:2869–2874.
  • Peterson LR, Woods CW, Davis TE, et al. Performance of the cobas MRSA/SA Test for Simultaneous Detection of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus From Nasal Swabs. Am J Clin Pathol. 2017;148:119–127.
  • Moure R, Á C, Muíño M, et al. Use of the cobas 4800 system for the rapid detection of toxigenic Clostridium difficile and methicillin-resistant Staphylococcus aureus. J Microbiol Methods. 2016;120:50–52.
  • 510(k) Substantial Equivalence Determination Decision Summary MRSA/SA ELITe MGB [Internet]. [cited 2019 Nov 12]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K112937.
  • Hirvonen JJ, Kaukoranta -S-S. GenomEra MRSA/SA, a fully automated homogeneous PCR assay for rapid detection of Staphylococcus aureus and the marker of methicillin resistance in various sample matrixes. Expert Rev Mol Diagn. 2013;13:655–665.
  • Henares D, Brotons P, Buyse X, et al. Evaluation of the eazyplex MRSA assay for the rapid detection of Staphylococcus aureus in pleural and synovial fluid. Inter J Infect Dis. 2017;59:65–68.
  • Hirvonen JJ. The use of molecular methods for the detection and identification of methicillin-resistant Staphylococcus aureus. Biomark Med. 2014;8:1115–1125.
  • Maalej SM, Rhimi FM, Fines M, et al. Analysis of borderline oxacillin-resistant Staphylococcus aureus (BORSA) strains isolated in Tunisia. J Clin Microbiol. 2012;50:3345–3348.
  • Argudín MA, Roisin S, Nienhaus L, et al. Genetic Diversity among Staphylococcus aureus Isolates Showing Oxacillin and/or Cefoxitin Resistance Not Linked to the Presence of mec Genes. Antimicrob Agents Chemother. 2018;62. DOI:10.1128/AAC.00091-18.
  • CLSI. Performance standards for antimicrobial susceptibility testing. CLSI Standard M100. 29th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.
  • Kaase M, Baars B, Friedrich S, et al. Performance of MicroScan WalkAway and Vitek 2 for Detection of Oxacillin Resistance in a Set of Methicillin-Resistant Staphylococcus aureus Isolates with Diverse Genetic Backgrounds. J Clin Microbiol. 2009;47:2623–2625.
  • Junkins AD, Lockhart SR, Heilmann KP, et al. BD Phoenix and Vitek 2 Detection of mecA-Mediated Resistance in Staphylococcus aureus with Cefoxitin. J Clin Microbiol. 2009;47:2879–2882.
  • Bobenchik AM, Hindler JA, Giltner CL, et al. Performance of Vitek 2 for Antimicrobial Susceptibility Testing of Staphylococcus spp. and Enterococcus spp. J Clin Microbiol. 2014;52:392–397.
  • Gallon O, Pina P, Gravet A, et al. Performance of a New MicroScan WalkAway PC30 Panel and Disk Diffusion Method for Detection of Oxacillin Resistance in Staphylococcus spp. J Clin Microbiol. 2011;49:2269–2271.
  • Chen F-J, Huang I-W, Wang C-H, et al. mecA-Positive Staphylococcus aureus with Low-Level Oxacillin MIC in Taiwan. J Clin Microbiol. 2012;50:1679–1683.
  • Kriegeskorte A, Idelevich EA, Schlattmann A, et al. Comparison of Different Phenotypic Approaches To Screen and Detect mecC-Harboring Methicillin-Resistant Staphylococcus aureus. J Clin Microbiol. 2018;56:e00826–17. .
  • Akcam FZ, Tinaz GB, Kaya O, et al. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities. Microbiol Res. 2009;164:400–403.
  • Nonhoff C, Roisin S, Hallin M, et al. Evaluation of Clearview Exact PBP2a, a New Immunochromatographic Assay, for Detection of Low-Level Methicillin-Resistant Staphylococcus aureus (LL-MRSA). J Clin Microbiol. 2012;50:3359–3360.
  • Dupieux C, Trouillet-Assant S, Tasse J, et al. Evaluation of a commercial immunochromatographic assay for rapid routine identification of PBP2a-positive Staphylococcus aureus and coagulase-negative staphylococci. Diagn Microbiol Infect Dis. 2016;86:262–264.
  • Trienski TL, Barrett HL, Pasquale TR, et al. Evaluation and use of a rapid Staphylococcus aureus assay by an antimicrobial stewardship program. Am J Health Syst Pharm. 2013;70:1908–1912.
  • Miller SA, Karichu J, Kohner P, et al. Multicenter Evaluation of a Modified Cefoxitin Disk Diffusion Method and PBP2a Testing To Predict mecA -Mediated Oxacillin Resistance in Atypical Staphylococcus aureus. Carroll KC, editor. J Clin Microbiol. 2017;55:485–494.
  • Dupieux C, Bouchiat C, Larsen AR, et al. Detection of mecC-Positive Staphylococcus aureus: what To Expect from Immunological Tests Targeting PBP2a? J Clin Microbiol. 2017;55:1961–1963.
  • Romero-Gómez MP, Quiles-Melero I, Navarro C, et al. Evaluation of the BinaxNOW PBP2a assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. Diagn Microbiol Infect Dis. 2012;72:282–284.
  • Delport JA, Mohorovic I, Burn S, et al. Rapid detection of meticillin-resistant Staphylococcus aureus bacteraemia using combined three-hour short-incubation matrix-assisted laser desorption/ionization time-of-flight MS identification and Alere Culture Colony PBP2a detection test. J Med Microbiol. 2016;65:626–631.
  • Oviaño M, Bou G. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin Microbiol Rev. 2018;32:e00037-18,/cmr/32/1/e00037-18.atom.
  • Kim JM, Kim I, Chung Y, et al. Rapid Discrimination of Methicillin-Resistant Staphylococcus aureus by MALDI-TOF MS. Pathogens. 2019;8:214.
  • van Belkum A, Welker M, Pincus D, et al. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: what Are the Current Issues? Ann Lab Med. 2017;37:475.
  • Chatterjee SS, Chen L, Joo H-S, et al. Distribution and Regulation of the Mobile Genetic Element-Encoded Phenol-Soluble Modulin PSM-mec in Methicillin-Resistant Staphylococcus aureus. Horsburgh MJ, editor. PLoS ONE. 2011;6:e28781.
  • Josten M, Dischinger J, Szekat C, et al. Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry. Int J Med Microbiol. 2014;304:1018–1023.
  • Rhoads DD, Wang H, Karichu J, et al. The presence of a single MALDI-TOF mass spectral peak predicts methicillin resistance in staphylococci. Diagn Microbiol Infect Dis. 2016;86:257–261. .
  • Maxson T, Taylor-Howell CL, Minogue TD. Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus. Becker K, editor. PLoS One. 2017;12:e0183899.
  • Sparbier K, Lange C, Jung J, et al. MALDI Biotyper-Based Rapid Resistance Detection by Stable-Isotope Labeling. J Clin Microbiol. 2013;51:3741–3748.
  • Kawamoto Y, Kosai K, Yamakawa H, et al. Detection of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae using the MALDI Biotyper Selective Testing of Antibiotic Resistance–β-Lactamase (MBT STAR-BL) assay. J Microbiol Methods. 2019;160:154–156.
  • Peaper DR, Kulkarni MV, Tichy AN, et al. Rapid detection of carbapenemase activity through monitoring ertapenem hydrolysis in Enterobacteriaceae with LC–MS/MS. Bioanalysis. 2013;5:147–157.
  • Behera B, Anil Vishnu GK, Chatterjee S, et al. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron. 2019;142:111552.
  • Van den Poel B, Meersseman P, Debaveye Y, et al. Performance and potential clinical impact of Alfred60AST (Alifax®) for direct antimicrobial susceptibility testing on positive blood culture bottles. Eur J Clin Microbiol Infect Dis. 2020;39:53–63.
  • Anton-Vazquez V, Adjepong S, Suarez C, et al. Evaluation of a new Rapid Antimicrobial Susceptibility system for Gram-negative and Gram-positive bloodstream infections: speed and accuracy of Alfred 60AST. BMC Microbiol. 2019;19:268.
  • Sánchez-Carrillo C, Pescador P, Ricote R, et al. Evaluation of the Alfred AST® system for rapid antimicrobial susceptibility testing directly from positive blood cultures. Eur J Clin Microbiol Infect Dis. 2019;38:1665–1670.
  • Boland L, Streel C, De Wolf H, et al. Rapid antimicrobial susceptibility testing on positive blood cultures through an innovative light scattering technology: performances and turnaround time evaluation. BMC Infect Dis. 2019;19:989.
  • Hayden RT, Clinton LK, Hewitt C, et al. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology. Patel R, editor. J Clin Microbiol. 2016;54:2701–2706.
  • Beganovic M, McCreary EK, Mahoney MV, et al. Interplay between Rapid Diagnostic Tests and Antimicrobial Stewardship Programs among Patients with Bloodstream and Other Severe Infections. J Appl Lab Med. 2019;3:601–616.
  • Salimnia H, Fairfax MR, Lephart PR, et al. Evaluation of the FilmArray Blood Culture Identification Panel: results of a Multicenter Controlled Trial. J Clin Microbiol. 2016;54:687–698.
  • 510(k) Substantial Equivalence Determination Decision Summary FilmArray® Blood Culture Identification (BCID) Panel [Internet]. [cited 2019 Nov 16]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K130914.
  • McCoy MH, Relich RF, Davis TE, et al. Performance of the FilmArray® blood culture identification panel utilized by non-expert staff compared with conventional microbial identification and antimicrobial resistance gene detection from positive blood cultures. J Med Microbiol. 2016;65:619–625.
  • Zheng X, Polanco W, Carter D, et al. Rapid Identification of Pathogens from Pediatric Blood Cultures by Use of the FilmArray Blood Culture Identification Panel. J Clin Microbiol. 2014;52:4368–4371.
  • Rand KH, Delano JP. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry. Diagn Microbiol Infect Dis. 2014;79:293–297.
  • Fiori B, D’Inzeo T, Giaquinto A, et al. Optimized Use of the MALDI BioTyper System and the FilmArray BCID Panel for Direct Identification of Microbial Pathogens from Positive Blood Cultures. J Clin Microbiol. 2016;54:576–584.
  • Chantell C. Multiplexed Automated Digital Microscopy for Rapid Identification and Antimicrobial Susceptibility Testing of Bacteria and Yeast Directly from Clinical Samples. Clin Microbiol Newsl. 2015;37:161–167.
  • Charnot-Katsikas A, Tesic V, Love N, et al. Use of the Accelerate Pheno System for Identification and Antimicrobial Susceptibility Testing of Pathogens in Positive Blood Cultures and Impact on Time to Results and Workflow. J Clin Microbiol. 2018;56:e01166–17.
  • Sofjan AK, Casey BO, Xu BA, et al. Accelerate PhenoTestTM BC Kit Versus Conventional Methods for Identification and Antimicrobial Susceptibility Testing of Gram-Positive Bloodstream Isolates: potential Implications for Antimicrobial Stewardship. Ann Pharmacother. 2018;52:754–762.
  • Lutgring JD, Bittencourt C, McElvania TeKippe E, et al. Evaluation of the accelerate pheno system: results from two academic medical centers. J Clin Microbiol. 2018;56(4):e01672-17.
  • Pancholi P, Carroll KC, Buchan BW, et al. multicenter evaluation of the accelerate phenotest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol. 2018;56.
  • Buchan BW, Ginocchio CC, Manii R, et al. multiplex identification of gram-positive bacteria and resistance determinants directly from positive blood culture broths: evaluation of an automated microarray-based nucleic acid test. PLoS Med. 2013;10:e1001478.
  • Vareechon C, Mestas J, Polanco CM, et al. A 5-year study of the performance of the Verigene Gram-positive blood culture panel in a pediatric hospital. Eur J Clin Microbiol Infect Dis. 2018;37:2091–2096.
  • Beckman M, Washam MC, DeBurger B, et al. Reliability of the Verigene system for the identification for Gram-positive Bacteria and detection of antimicrobial resistance markers from children with bacteremia. Diagn Microbiol Infect Dis. 2019;93:191–195.
  • Samuel LP, Tibbetts RJ, Agotesku A, et al. Evaluation of a Microarray-Based Assay for Rapid Identification of Gram-Positive Organisms and Resistance Markers in Positive Blood Cultures. J Clin Microbiol. 2013;51:1188–1192.
  • 510(k) Substantial Equivalence Determination Decision Summary ePlex Blood Culture Identification Gram-Positive (BCID-GP) Panel [Internet]. 2019 [cited 2019 Nov 18]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K181663.
  • Buchan BW, Allen S, Burnham C-AD, et al. Comparison of the Next-Generation Xpert MRSA/SA BC Assay and the GeneOhm StaphSR Assay to Routine Culture for Identification of Staphylococcus aureus and Methicillin-Resistant S. aureus in Positive-Blood-Culture Broths. J Clin Microbiol. 2015;53:804–809.
  • Romero-Gómez MP, Muñoz-Velez M, Gómez-Gil R, et al. Evaluation of combined use of MALDI-TOF and Xpert® MRSA/SA BC assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. J Infect. 2013;67:91–92.
  • Spencer DH, Sellenriek P, Burnham C-AD. Validation and Implementation of the GeneXpert MRSA/SA Blood Culture Assay in a Pediatric Setting. Am J Clin Pathol. 2011;136:690–694.
  • Yossepowitch O, Dan M, Kutchinsky A, et al. A cost-saving algorithm for rapid diagnosis of Staphylococcus aureus and susceptibility to oxacillin directly from positive blood culture bottles by combined testing with BinaxNOW® S. aureus and Xpert MRSA/SA assay. Diagn Microbiol Infect Dis. 2014;78:352–355.
  • Biendo M, Mammeri H, Pluquet E, et al. Value of Xpert MRSA/SA blood culture assay on the Gene Xpert® Dx System for rapid detection of Staphylococcus aureus and coagulase-negative staphylococci in patients with staphylococcal bacteremia. Diagn Microbiol Infect Dis. 2013;75:139–143.
  • Pescador P, Romero-Gómez MP, Gómez Gil R, et al. Evaluation of combined use of the MALDI-TOF and GenomEra MRSA/SA assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. Enferm Infecc Microbiol Clin. 2016;34:687–688.
  • Eigner U, Weizenegger M, Fahr A-M, et al. Evaluation of a Rapid Direct Assay for Identification of Bacteria and the mecA and van Genes from Positive-Testing Blood Cultures. J Clin Microbiol. 2005;43:5256–5262.
  • Galiana A, Coy J, Gimeno A, et al. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections. Plos One. 2017;12:e0177627.
  • Carrara L, Navarro F, Turbau M, et al. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J Med Microbiol. 2013;62:1673–1679.
  • Marco D, Carlo S, Sara C, et al. MagicplexTM Sepsis Real-Time test to improve bloodstream infection diagnostics in children. Eur J Pediatr. 2016;175:1107–1111.
  • Schreiber J, Nierhaus A, Braune SA, et al. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med Klin Intensivmed Notfmed. 2013;108:311–318.
  • Tenover FC, Tickler IA. Is That Staphylococcus aureus Isolate Really Methicillin Susceptible? Clin Microbiol Newsl. 2015;37:79–84. .
  • Goering RV, Swartzendruber EA, Obradovich AE, et al. Emergence of Oxacillin Resistance in Stealth Methicillin-Resistant Staphylococcus aureus Due to mecA Sequence Instability. Antimicrob Agents Chemother. 2019;63(8):e00558-19.
  • Southern TR, VanSchooneveld TC, Bannister DL, et al. Implementation and performance of the BioFire FilmArray® Blood Culture Identification panel with antimicrobial treatment recommendations for bloodstream infections at a midwestern academic tertiary hospital. Diagn Microbiol Infect Dis. 2015;81:96–101.
  • Lee G-H, Pang S, Coombs GW. Misidentification of Staphylococcus aureus by the Cepheid Xpert MRSA/SA BC Assay Due to Deletions in the spa Gene. J Clin Microbiol. 2018;56(7):e00530-18.
  • Tenover FC, Tickler IA, Le VM, et al. Updating Molecular Diagnostics for Detecting Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Isolates in Blood Culture Bottles. J Clin Microbiol. 2019;57.
  • Hirvonen JJ, von Lode P, Nevalainen M, et al. One-step sample preparation of positive blood cultures for the direct detection of methicillin-sensitive and -resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci within one hour using the automated GenomEra CDXTM PCR system. Eur J Clin Microbiol Infect Dis. 2012;31:2835–2842.
  • Tissari P, Zumla A, Tarkka E, et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet. 2010;375:224–230.
  • Afshari A, Schrenzel J, Ieven M, et al. Bench-to-bedside review: rapid molecular diagnostics for bloodstream infection - a new frontier? Crit Care. 2012;16:1–12.
  • Wolk DM, Struelens MJ, Pancholi P, et al. Rapid Detection of Staphylococcus aureus and Methicillin-Resistant S. aureus (MRSA) in Wound Specimens and Blood Cultures: multicenter Preclinical Evaluation of the Cepheid Xpert MRSA/SA Skin and Soft Tissue and Blood Culture Assays. J Clin Microbiol. 2009;47:823–826.
  • Dubouix-Bourandy A, de Ladoucette A, Pietri V, et al. Direct Detection of Staphylococcus Osteoarticular Infections by Use of Xpert MRSA/SA SSTI Real-Time PCR. J Clin Microbiol. 2011;49:4225–4230.
  • Parta M, Goebel M, Matloobi M, et al. Identification of Methicillin-Resistant or Methicillin-Susceptible Staphylococcus aureus in Blood Cultures and Wound Swabs by GeneXpert. J Clin Microbiol. 2009;47:1609–1610.
  • Bouza E, Onori R, Semiglia-Chong MA, et al. Fast track SSTI management program based on a rapid molecular test (GeneXpert® MRSA/SA SSTI) and antimicrobial stewardship. J Microbiol Immunol Infect. 2020;53:328–335.
  • Self WH, Wunderink RG, Williams DJ, et al. Staphylococcus aureus Community-acquired Pneumonia: prevalence, Clinical Characteristics, and Outcomes. Clin Infect Dis. 2016;63:300–309.
  • Di Pasquale MF, Sotgiu G, Gramegna A, et al. Prevalence and Etiology of Community-acquired Pneumonia in Immunocompromised Patients. Clin Infect Dis. 2019;68:1482–1493.
  • Jones BE, Brown KA, Jones MM, et al. Variation in Empiric Coverage Versus Detection of Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa in Hospitalizations for Community-Onset Pneumonia Across 128 US Veterans Affairs Medical Centers. Infect Control Hosp Epidemiol. 2017;38:937–944.
  • Aliberti S, Reyes LF, Faverio P, et al. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016;16:1364–1376.
  • Fisher K, Trupka T, Micek ST, et al. A Prospective One-Year Microbiologic Survey of Combined Pneumonia and Respiratory Failure. Surg Infect (Larchmt). 2017;18:827–833.
  • Guillamet CV, Kollef MH. Update on ventilator-associated pneumonia. Curr Opin Crit Care. 2015;21:430–438.
  • Rubinstein E, Kollef MH, Nathwani D. Pneumonia Caused by Methicillin‐Resistant Staphylococcus aureus. Clin Infect Dis. 2008;46:S378–S385.
  • Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37:1288–1301.
  • Tadros M, Williams V, Coleman BL, et al. Epidemiology and Outcome of Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus (MRSA) in Canadian Hospitals. Kluytmans J, editor. PLoS One. 2013;8:e75171.
  • Cercenado E, Marin M, Burillo A, et al. Rapid Detection of Staphylococcus aureus in Lower Respiratory Tract Secretions from Patients with Suspected Ventilator-Associated Pneumonia: evaluation of the Cepheid Xpert MRSA/SA SSTI Assay. J Clin Microbiol. 2012;50:4095–4097.
  • Trevino SE, Pence MA, Marschall J, et al. Rapid MRSA PCR on respiratory specimens from ventilated patients with suspected pneumonia: a tool to facilitate antimicrobial stewardship. Eur J Clin Microbiol Infect Dis. 2017;36:879–885.
  • Paonessa JR, Shah RD, Pickens CI, et al. Rapid Detection of Methicillin-Resistant Staphylococcus aureus in BAL. Chest. 2019;155:999–1007.
  • Coppens J, Van Heirstraeten L, Ruzin A, et al. Comparison of GeneXpert MRSA/SA ETA assay with semi-quantitative and quantitative cultures and nuc gene-based qPCR for detection of Staphylococcus aureus in endotracheal aspirate samples. Antimicrob Resist Infect Control. 2019;8:4.
  • Kunze N, Moerer O, Steinmetz N, et al. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia – an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob. 2015;14:33.
  • Personne Y, Ozongwu C, Platt G, et al. ‘Sample-in, answer-out’? Evaluation and comprehensive analysis of the Unyvero P50 pneumonia assay. Diagn Microbiol Infect Dis. 2016;86:5–10.
  • Papan C, Meyer-Buehn M, Laniado G, et al. Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. Infection. 2018;46:189–196.
  • Ozongwu C, Personne Y, Platt G, et al. The Unyvero P55 ‘sample-in, answer-out’ pneumonia assay: A performance evaluation. Biomol Detect Quantif. 2017;13:1–6.
  • Gadsby NJ, McHugh MP, Forbes C, et al. Comparison of Unyvero P55 Pneumonia Cartridge, in-house PCR and culture for the identification of respiratory pathogens and antibiotic resistance in bronchoalveolar lavage fluids in the critical care setting. Eur J Clin Microbiol Infect Dis. 2019;38:1171–1178.
  • Kerr S, Broadbent K, Balada-Llasa JM, et al. Clinical Evaluation of the BioFire FilmArray pneumonia panel plus. Am Soc Microbiol Microbe Meeting, 2018, Abstract #356.
  • Webber DM, Johnson C, Wallace MA, et al. Evaluation of the BioFire FilmArray pneumonia panel for detection of viral and bacterial pathogens in lower respiratory tract specimens in the setting of a tertiary care academic medical center. Am Soc Microbiol Microbe Meeting, 2019, Abstract #725.
  • Ross JJ. Septic arthritis of native joints. Infect Dis Clin North Am. 2017;31:203–218.
  • Davidson DJ, Spratt D, Liddle AD. Implant materials and prosthetic joint infection: the battle with the biofilm. EFORT Open Rev. 2019;4:633–639.
  • Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409.
  • Drago L, Clerici P, Morelli I, et al. The World Association against Infection in Orthopaedics and Trauma (WAIOT) procedures for Microbiological Sampling and Processing for Periprosthetic Joint Infections (PJIs) and other Implant-Related Infections. JCM. 2019;8:933.
  • Rak M, KavčIč M, Trebše R, et al. Detection of bacteria with molecular methods in prosthetic joint infection: sonication fluid better than periprosthetic tissue. Acta Orthop. 2016;87:339–345.
  • Sambri A, Pignatti G, Romagnoli M, et al. Intraoperative diagnosis of Staphylococcus aureus and coagulase-negative Staphylococcus using Xpert MRSA/SA SSTI assay in prosthetic joint infection. New Microbiol. 2017;40:130–134.
  • Titécat M, Loïez C, Senneville E, et al. Evaluation of rapid mecA gene detection versus standard culture in staphylococcal chronic prosthetic joint infections. Diagn Microbiol Infect Dis. 2012;73:318–321.
  • Titécat M, Wallet F, Robineau O, et al. Focus on MRSA/SA SSTI Assay Failure in Prosthetic Joint Infections: 213 Consecutive Patients Later. Patel R, editor. J Clin Microbiol. 2017;55:635–637.
  • Villa F, Toscano M, De Vecchi E, et al. Reliability of a multiplex PCR system for diagnosis of early and late prosthetic joint infections before and after broth enrichment. Int J Med Microbiol. 2017;307:363–370.
  • Malandain D, Bémer P, Leroy AG, et al. Assessment of the automated multiplex-PCR Unyvero i60 ITI® cartridge system to diagnose prosthetic joint infection: a multicentre study. Clin Microbiol Infect. 2018;24:83.e1-83.e6.
  • Curetis GmBH. Operating manual for the Unyvero ITI application manual. [updated 2019 5]. Available from: https://curetis.com/wp-content/uploads/00207-Rev-5.0-ITI-Application-Manual_EN_PDF_A.pdf
  • Price J, Claire Gordon N, Crook D, et al. The usefulness of whole genome sequencing in the management of Staphylococcus aureus infections. Clin Microbiol Infect. 2013;19:784–789.
  • Price JR, Didelot X, Crook DW, et al. Whole genome sequencing in the prevention and control of Staphylococcus aureus infection. J Hosp Infect. 2013;83:14–21.
  • Tagini F, Greub G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis. 2017;36:2007–2020.
  • Humphreys H, Coleman DC. Contribution of whole-genome sequencing to understanding of the epidemiology and control of meticillin-resistant Staphylococcus aureus. J Hosp Infect. 2019;102:189–199.
  • Roisin S, Gaudin C, De Mendonça R, et al. Pan-genome multilocus sequence typing and outbreak-specific reference-based single nucleotide polymorphism analysis to resolve two concurrent Staphylococcus aureus outbreaks in neonatal services. Clin Microbiol Infect. 2016;22:520–526.
  • Kinnevey PM, Shore AC, Mac Aogáin M, et al. Enhanced Tracking of Nosocomial Transmission of Endemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Type IV Isolates among Patients and Environmental Sites by Use of Whole-Genome Sequencing. J Clin Microbiol. 2016;54:445–448.
  • Schürch AC, Arredondo-Alonso S, Willems RJL, et al. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin Microbiol Infect. 2018;24:350–354. .
  • Tang P, Croxen MA, Hasan MR, et al. Infection control in the new age of genomic epidemiology. Am J Infect Control. 2017;45:170–179.
  • Besser J, Carleton HA, Gerner-Smidt P, et al. Next-Generation Sequencing Technologies and their Application to the Study and Control of Bacterial Infections. Clin Microbiol Infect. 2018;24:335–341.
  • Peacock SJ, Parkhill J, Brown NM. Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens. Microbiology. 2018;164:1213–1219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.