256
Views
9
CrossRef citations to date
0
Altmetric
Review

The potential for CXCL13 in CSF as a differential diagnostic tool in central nervous system infection

ORCID Icon, &
Pages 875-885 | Received 03 Dec 2019, Accepted 14 May 2020, Published online: 01 Jun 2020

References

  • Klein RS, Hunter CA. Protective and pathological immunity during central nervous system Infections. Immunity. 2017;46(6):891–909.
  • Auburtin M, Wolff M, Charpentier J, et al. Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit Care Med. 2006;34(11):2758–2765.
  • Dorsett M, Liang SY. Diagnosis and treatment of central nervous system infections in the emergency department. Emerg Med Clin North Am. 2016;34:917–942.
  • Papa A, Kotrotsiou T, Papadopoulou E, et al. Challenges in laboratory diagnosis of acute viral central nervous system infections in the era of emerging infectious diseases: the syndromic approach. Expert Rev Anti Infect Ther. 2016;14(9):829–836.
  • Giovane RA, Lavender PD. Central nervous system infections. Prim Care. 2018;45:505–518.
  • Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32(1):659–702.
  • Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36(5):705–716.
  • Aloisi F, Columba-Cabezas S, Franciotta D, et al. Lymphoid chemokines in chronic neuroinflammation. J Neuroimmunol. 2008;198(1–2):106–112.
  • Lalor SJ, Segal BM. Lymphoid chemokines in the CNS. J Neuroimmunol. 2010;224(1–2):56–61.
  • Kothur K, Wienholt L, Brilot F, et al. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine. 2016;77:227–237.
  • Le TO, Blondeau N, Nahon JL, et al. The complex contribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Ann N Y Acad Sci. 2015;1351:127–140.
  • Gunn MD, Ngo VN, Ansel KM, et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature. 1998;391(6669):799–803.
  • Legler DF, Loetscher M, Roos RS, et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med. 1998;187:655–660.
  • Ansel KM, Harris RB, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity. 2002;16:67–76.
  • Cyster JG, Ansel KM, Reif K, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev. 2000;176:181–193.
  • Ansel KM, Cyster JG. Chemokines in lymphopoiesis and lymphoid organ development. Curr Opin Immunol. 2001;13(2):172–179.
  • Takagi R, Higashi T, Hashimoto K, et al. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones. J Immunol. 2008;181(1):186–189.
  • Forster R, Mattis AE, Kremmer E, et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–1047.
  • Finch DK, Ettinger R, Karnell JL, et al. Effects of CXCL13 inhibition on lymphoid follicles in models of autoimmune disease. Eur J Clin Invest. 2013;43(5):501–509.
  • Kim JR, Lim HW, Kang SG, et al. Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol. 2005;6(1):3.
  • McHeyzer-Williams M, Okitsu S, Wang N, et al. Molecular programming of B cell memory. Nat Rev Immunol. 2011;12:24–34.
  • Moser B, Ebert L. Lymphocyte traffic control by chemokines: follicular B helper T cells. Immunol Lett. 2003;85:105–112.
  • Galamb O, Gyorffy B, Sipos F, et al. Helicobacter pylori and antrum erosion-specific gene expression patterns: the discriminative role of CXCL13 and VCAM1 transcripts. Helicobacter. 2008;13(2):112–126.
  • Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–1552.
  • Schaerli P, Willimann K, Lang AB, et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1553–1562.
  • Ngo VN, Korner H, Gunn MD, et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med. 1999;189:403–412.
  • Brendolan A, Caamano JH. Mesenchymal cell differentiation during lymph node organogenesis. Front Immunol. 2012;3:381.
  • van de Pavert SA, Olivier BJ, Goverse G, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol. 2009;10(11):1193–1199.
  • van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol. 2010;10(9):664–674.
  • Kuroda E, Ozasa K, Temizoz B, et al. Inhaled fine particles induce alveolar macrophage death and interleukin-1alpha release to promote inducible bronchus-associated lymphoid tissue formation. Immunity. 2016;45:1299–1310.
  • Barone F, Nayar S, Campos J, et al. IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A. 2015;112:11024–11029.
  • Denton AE, Innocentin S, Carr EJ, et al. Type I interferon induces CXCL13 to support ectopic germinal center formation. J Exp Med. 2019;216(3):621–637.
  • Esen N, Rainey-Barger EK, Huber AK, et al. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia. 2014;62(9):1452–1462.
  • Irani DN. Regulated production of CXCL13 within the central nervous system. J Clin Cell Immunol. 2016;7(5). DOI:10.4172/2155-9899.1000460
  • Rupprecht TA, Koedel U, Fingerle V, et al. The pathogenesis of lyme neuroborreliosis: from infection to inflammation. Mol Med. 2008;14:205–212.
  • Narayan K, Dail D, Li L, et al. The nervous system as ectopic germinal center: CXCL13 and IgG in lyme neuroborreliosis. Ann Neurol. 2005;57(6):813–823.
  • Krumbholz M, Theil D, Cepok S, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129(1):200–211.
  • Magliozzi R, Columba-Cabezas S, Serafini B, et al. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol. 2004;148(1–2):11–23.
  • Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14(2):164–174.
  • Kazanietz MG, Durando M, Cooke M. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond. Front Endocrinol (Lausanne). 2019;10:471.
  • Stanek G, Wormser GP, Gray J, et al. Lyme borreliosis. Lancet. 2012;379(9814):461–473.
  • Cardenas-de la Garza JA, Cruz-Valadez E, Ocampo-Candiani J, et al. Clinical spectrum of Lyme disease. Eur J Clin Microbiol Infect Dis. 2019;38(2):201–208.
  • Hansen K, Lebech AM. The clinical and epidemiological profile of Lyme neuroborreliosis in Denmark 1985–1990. A prospective study of 187 patients with Borrelia burgdorferi specific intrathecal antibody production. Brain. 1992;115(Pt 2):399–423.
  • Henningsson AJ, Malmvall BE, Ernerudh J, et al. Neuroborreliosis–an epidemiological, clinical and healthcare cost study from an endemic area in the south-east of Sweden. Clin Microbiol Infect. 2010;16:1245–1251.
  • Shapiro ED. Lyme disease. N Engl J Med. 2014;371:684.
  • Mygland A, Ljostad U, Fingerle V, et al. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol. 2010;17:8.
  • Koedel U, Fingerle V, Pfister HW. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat Rev Neurol. 2015;11:446–456.
  • Kristoferitsch W. Neurological manifestations of Lyme borreliosis. Infection. 1991;19:268–272.
  • Hansen K, Lebech AM. Lyme neuroborreliosis: a new sensitive diagnostic assay for intrathecal synthesis of Borrelia burgdorferi–specific immunoglobulin G, A, and M. Ann Neurol. 1991;30:197–205.
  • Ljostad U, Skarpaas T, Mygland A. Clinical usefulness of intrathecal antibody testing in acute Lyme neuroborreliosis. Eur J Neurol. 2007;14:873–876.
  • Koedel U, Pfister HW. Lyme neuroborreliosis. Curr Opin Infect Dis. 2017;30:101–107.
  • Hammers-Berggren S, Hansen K, Lebech AM, et al. Borrelia burgdorferi-specific intrathecal antibody production in neuroborreliosis: a follow-up study. Neurology. 1993;43:169–175.
  • Cerar T, Ogrinc K, Cimperman J, et al. Validation of cultivation and PCR methods for diagnosis of Lyme neuroborreliosis. J Clin Microbiol. 2008;46(10):3375–3379.
  • Ogrinc K, Lotric-Furlan S, Maraspin V, et al. Suspected early Lyme neuroborreliosis in patients with erythema migrans. Clin Infect Dis. 2013;57(4):501–509.
  • Eikeland R, Mygland Å, Herlofson K, et al. Risk factors for a non-favorable outcome after treated European neuroborreliosis. Acta Neurol Scand. 2013;127(3):154–160.
  • Cepok S, Rosche B, Grummel V, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005;128(7):1667–1676.
  • Cepok S, Zhou D, Vogel F, et al. The immune response at onset and during recovery from Borrelia burgdorferi meningoradiculitis. Arch Neurol. 2003;60(6):849–855.
  • Rupprecht TA, Plate A, Adam M, et al. The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation. 2009;6(1):42.
  • Rupprecht TA, Pfister HW, Angele B, et al. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology. 2005;65(3):448–450.
  • Kowarik MC, Cepok S, Sellner J, et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012;9(1):93.
  • Picha D, Moravcova L, Smiskova D. Prospective study on the chemokine CXCL13 in neuroborreliosis and other aseptic neuroinfections. J Neurol Sci. 2016;368:214–220.
  • Markowicz M, Schotta AM, Kundi M, et al. CXCL13 concentrations in cerebrospinal fluid of patients with Lyme neuroborreliosis and other neurological disorders determined by Luminex and ELISA. Ticks Tick Borne Dis. 2018;9:1137–1142.
  • Henningsson AJ, Lager M, Brannstrom R, et al. The chemokine CXCL13 in cerebrospinal fluid in children with Lyme neuroborreliosis. Eur J Clin Microbiol Infect Dis. 2018;37(10):1983–1991.
  • Sillanpaa H, Skogman BH, Sarvas H, et al. Cerebrospinal fluid chemokine CXCL13 in the diagnosis of neuroborreliosis in children. Scand J Infect Dis. 2013;45:526–530.
  • Moniuszko A, Czupryna P, Pancewicz S, et al. Evaluation of CXCL8, CXCL10, CXCL11, CXCL12 and CXCL13 in serum and cerebrospinal fluid of patients with neuroborreliosis. Immunol Lett. 2014;157(1–2):45–50.
  • Wagner JN, Weis S, Kubasta C, et al. CXCL13 as a diagnostic marker of neuroborreliosis and other neuroinflammatory disorders in an unselected group of patients. J Neurol. 2018;265(1):74–81.
  • Waiss C, Kindler W, Strobele B, et al. [CXCL-13 as a biomarker in the diagnostics of neuroborreliosis]. Nervenarzt. 2017;88:635–641.
  • Barstad B, Tveitnes D, Noraas S, et al. Cerebrospinal fluid B-lymphocyte chemoattractant CXCL13 in the diagnosis of acute lyme neuroborreliosis in children. Pediatr Infect Dis J. 2017;36(12):e286–e292.
  • Tjernberg I, Henningsson AJ, Eliasson I, et al. Diagnostic performance of cerebrospinal fluid chemokine CXCL13 and antibodies to the C6-peptide in Lyme neuroborreliosis. J Infect. 2011;62(2):149–158.
  • Rupprecht TA, Koedel U, Angele B, et al. [Cytokine CXCL13–a possible early CSF marker for neuroborreliosis]. Nervenarzt. 2006;77:470–473.
  • Schmidt C, Plate A, Angele B, et al. A prospective study on the role of CXCL13 in Lyme neuroborreliosis. Neurology. 2011;76:1051–1058.
  • Wutte N, Berghold A, Loffler S, et al. CXCL13 chemokine in pediatric and adult neuroborreliosis. Acta Neurol Scand. 2011;124(5):321–328.
  • Ljostad U, Mygland A. CSF B - lymphocyte chemoattractant (CXCL13) in the early diagnosis of acute Lyme neuroborreliosis. J Neurol. 2008;255:782.
  • van Burgel ND, Bakels F, Kroes AC, et al. Discriminating Lyme neuroborreliosis from other neuroinflammatory diseases by levels of CXCL13 in cerebrospinal fluid. J Clin Microbiol. 2011;49(5):2027–2030.
  • Rupprecht TA, Kirschning CJ, Popp B, et al. Borrelia garinii induces CXCL13 production in human monocytes through Toll-like receptor 2. Infect Immun. 2007;75:4351–4356.
  • Rubenstein JL, Wong VS, Kadoch C, et al. CXCL13 plus interleukin 10 is highly specific for the diagnosis of CNS lymphoma. Blood. 2013;121:4740–4748.
  • Rupprecht TA, Manz KM, Fingerle V, et al. Diagnostic value of cerebrospinal fluid CXCL13 for acute Lyme neuroborreliosis. A systematic review and meta-analysis. Clin Microbiol Infect. 2018;24(12):1234–1240.
  • Schueler S, et al. The revised QUADAS-2 tool. Ann Intern Med. 2012 Feb 21;156(4):323.
  • Hoang-Xuan K, Bessell E, Bromberg J, et al. Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients: guidelines from the European Association for Neuro-Oncology. Lancet Oncol. 2015;16(7):e322–e332.
  • Kaiser R. Intrathecal immune response in neuroborreliosis: importance of cross-reactive antibodies. Zentralbl Bakteriol. 1995;282:303–314.
  • Bremell D, Mattsson N, Edsbagge M, et al. Cerebrospinal fluid CXCL13 in Lyme neuroborreliosis and asymptomatic HIV infection. BMC Neurol. 2013;13(1):2.
  • Senel M, Rupprecht TA, Tumani H, et al. The chemokine CXCL13 in acute neuroborreliosis. J Neurol Neurosurg Psychiatry. 2010;81(8):929–933.
  • Gyllemark P, Forsberg P, Ernerudh J, et al. Intrathecal Th17- and B cell-associated cytokine and chemokine responses in relation to clinical outcome in Lyme neuroborreliosis: a large retrospective study. J Neuroinflammation. 2017;14(1):27.
  • Barstad B, Tveitnes D, Dalen I, et al. The B-lymphocyte chemokine CXCL13 in the cerebrospinal fluid of children with Lyme neuroborreliosis: associations with clinical and laboratory variables. Infect Dis (Lond). 2019;51:856–863.
  • Christen HJ. Lyme neuroborreliosis in children. Ann Med. 1996;28:235–240.
  • Oymar K, Tveitnes D. Clinical characteristics of childhood Lyme neuroborreliosis in an endemic area of northern Europe. Scand J Infect Dis. 2009;41:88–94.
  • Broekhuijsen-van Henten DM, Braun KP, Wolfs TF. Clinical presentation of childhood neuroborreliosis; neurological examination may be normal. Arch Dis Child. 2010;95(11):910–914.
  • Skogman BH, Croner S, Forsberg P, et al. Improved laboratory diagnostics of Lyme neuroborreliosis in children by detection of antibodies to new antigens in cerebrospinal fluid. Pediatr Infect Dis J. 2008;27(7):605–612.
  • Tveitnes D, Oymar K, Natas O. Laboratory data in children with Lyme neuroborreliosis, relation to clinical presentation and duration of symptoms. Scand J Infect Dis. 2009;41:355–362.
  • Janier M, Hegyi V, Dupin N, et al. 2014 European guideline on the management of syphilis. J Eur Acad Dermatol Venereol. 2014;28(12):1581–1593.
  • Kent ME, Romanelli F. Reexamining syphilis: an update on epidemiology, clinical manifestations, and management. Ann Pharmacother. 2008;42(2):226–236.
  • Ropper AH, Longo DL. Neurosyphilis. N Engl J Med. 2019;381(14):1358–1363.
  • Tuddenham S, Ghanem KG. Neurosyphilis: knowledge gaps and controversies. Sex Transm Dis. 2018;45(3):147–151.
  • Maldonado NG, Takhar SS. Update on emerging infections: news from the centers for disease control and prevention. Update to the CDC’s sexually transmitted diseases treatment guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. Ann Emerg Med. 2013;61:91–95.
  • Schofer H, Weberschock T, Brauninger W, et al. S2k guideline* “Diagnosis and therapy of syphilis”–short version. J Dtsch Dermatol Ges. 2015;13:472–480.
  • Busl KM, Bleck TP. Bacterial infections of the central nervous system. Curr Infect Dis Rep. 2013;15(6):612–630.
  • Zeng YL, Lin YQ, Zhang NN, et al. CXCL13 chemokine as a promising biomarker to diagnose neurosyphilis in HIV-negative patients. Springerplus. 2016;5:743.
  • Radolf JD, Arndt LL, Akins DR, et al. Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytes/macrophages. J Immunol. 1995;154:2866–2877.
  • Marra CM, Tantalo LC, Maxwell CL, et al. Alternative cerebrospinal fluid tests to diagnose neurosyphilis in HIV-infected individuals. Neurology. 2004;63(1):85–88.
  • Yu Q, Cheng Y, Wang Y, et al. Aberrant humoral immune responses in neurosyphilis: CXCL13/CXCR5 play a pivotal role for B-cell recruitment to the cerebrospinal fluid. J Infect Dis. 2017;216(5):534–544.
  • Marra CM, Tantalo LC, Sahi SK, et al. CXCL13 as a cerebrospinal fluid marker for neurosyphilis in HIV-infected patients with syphilis. Sex Transm Dis. 2010;37(5):283–287.
  • Hu R, Lu C, Lu S, et al. Value of CXCL13 in diagnosing asymptomatic neurosyphilis in HIV-infected patients. Int J STD AIDS. 2016;27(2):141–146.
  • Wang C, Wu K, Yu Q, et al. CXCL13, CXCL10 and CXCL8 as potential biomarkers for the diagnosis of neurosyphilis patients. Sci Rep. 2016;6(1):33569.
  • Yan Y, Wang J, Qu B, et al. CXCL13 and TH1/Th2 cytokines in the serum and cerebrospinal fluid of neurosyphilis patients. Medicine (Baltimore). 2017;96(47):e8850.
  • Dersch R, Hottenrott T, Senel M, et al. The chemokine CXCL13 is elevated in the cerebrospinal fluid of patients with neurosyphilis. Fluids Barriers CNS. 2015;12:12.
  • Mothapo KM, Verbeek MM, van der Velden LB, et al. Has CXCL13 an added value in diagnosis of neurosyphilis? J Clin Microbiol. 2015;53(5):1693–1696.
  • Spudich SS, Nilsson AC, Lollo ND, et al. Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis. 2005;5(1):98.
  • Probasco JC, Deeks SG, Lee E, et al. Cerebrospinal fluid in HIV-1 systemic viral controllers: absence of HIV-1 RNA and intrathecal inflammation. AIDS. 2010;24(7):1001–1005.
  • Remy MM, Schobi N, Kottanattu L, et al. Cerebrospinal fluid CXCL13 as a diagnostic marker of neuroborreliosis in children: a retrospective case-control study. J Neuroinflammation. 2017;14(1):173.
  • Tjernberg I, Johansson M, Henningsson AJ. Diagnostic performance of cerebrospinal fluid free light chains in Lyme neuroborreliosis – a pilot study. Clin Chem Lab Med. 2019;57(12):2008–2018.
  • Makhani L, Khatib A, Corbeil A, et al. 2018 in review: five hot topics in tropical medicine. Trop Dis Travel Med Vaccines. 2019;5:5.
  • Kennedy PGE, Rodgers J. Clinical and Neuropathogenetic Aspects of Human African Trypanosomiasis. Front Immunol. 2019;10:39.
  • Buscher P, Cecchi G, Jamonneau V, et al. Human African trypanosomiasis. Lancet. 2017;390(10110):2397–2409.
  • Chappuis F, Loutan L, Simarro P, et al. Options for field diagnosis of human african trypanosomiasis. Clin Microbiol Rev. 2005;18:133–146.
  • Mugasa CM, Adams ER, Boer KR, et al. Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis–systematic review. PLoS Negl Trop Dis. 2012;6:e1438.
  • Norman FF, Lopez-Velez R. Chagas disease: comments on the 2018 PAHO Guidelines for diagnosis and management. J Travel Med. 2019;26. DOI:10.1093/jtm/taz060
  • Courtioux B, Pervieux L, Vatunga G, et al. Increased CXCL-13 levels in human African trypanosomiasis meningo-encephalitis. Trop Med Int Health. 2009;14:529–534.
  • Tiberti N, Matovu E, Hainard A, et al. New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients. Clin Transl Med. 2013;2(1):1.
  • Tiberti N, Lejon V, Hainard A, et al. Neopterin is a cerebrospinal fluid marker for treatment outcome evaluation in patients affected by Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis. 2013;7(2):e2088.
  • Kaiser R. Tick-borne encephalitis. Infect Dis Clin North Am. 2008;22(3):561–75, x.
  • Taba P, Schmutzhard E, Forsberg P, et al. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol. 2017;24(10):1214–1e61.
  • Yoshii K. Epidemiology and pathological mechanisms of tick-borne encephalitis. J Vet Med Sci. 2019;81(3):343–347.
  • Riccardi N, Antonello RM, Luzzati R, et al. Tick-borne encephalitis in Europe: a brief update on epidemiology, diagnosis, prevention, and treatment. Eur J Intern Med. 2019;62:1–6.
  • Franzen-Rohl E, Larsson K, Skoog E, et al. High diagnostic yield by CSF-PCR for entero- and herpes simplex viruses and TBEV serology in adults with acute aseptic meningitis in Stockholm. Scand J Infect Dis. 2008;40(11–12):914–921.
  • Zajkowska J, Moniuszko-Malinowska A, Pancewicz SA, et al. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE). Adv Med Sci. 2011;56(2):311–317.
  • Cerar T, Ogrinc K, Lotric-Furlan S, et al. Diagnostic value of cytokines and chemokines in lyme neuroborreliosis. Clin Vaccine Immunol. 2013;20(10):1578–1584.
  • Lepennetier G, Hracsko Z, Unger M, et al. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflammation. 2019;16(1):219.
  • Skogman BH, Lager M, Henningsson AJ, et al. The recomBead Borrelia antibody index, CXCL13 and total IgM index for laboratory diagnosis of Lyme neuroborreliosis in children. Eur J Clin Microbiol Infect Dis. 2017;36(11):2221–2229.
  • Henningsson AJ, Gyllemark P, Lager M, et al. Evaluation of two assays for CXCL13 analysis in cerebrospinal fluid for laboratory diagnosis of Lyme neuroborreliosis. APMIS. 2016;124(11):985–990.
  • Hytonen J, Kortela E, Waris M, et al. CXCL13 and neopterin concentrations in cerebrospinal fluid of patients with Lyme neuroborreliosis and other diseases that cause neuroinflammation. J Neuroinflammation. 2014;11(1):103.
  • UR H, Tannapfel A, SK T, et al. Lyme borreliosis. Lancet Infect Dis. 2003;3:489–500.
  • Strle F, Ruzic-Sabljic E, Cimperman J, et al. Comparison of findings for patients with Borrelia garinii and Borrelia afzelii isolated from cerebrospinal fluid. Clin Infect Dis. 2006;43(6):704–710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.