413
Views
23
CrossRef citations to date
0
Altmetric
Review

Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies

&
Pages 1083-1092 | Received 06 Apr 2020, Accepted 02 Jul 2020, Published online: 16 Jul 2020

References

  • Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. American Association for the Advancement of Science; 2012.
  • Brown GD, Denning DW, Gow NA, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13–165rv13.
  • Rodrigues ML. The multifunctional fungal ergosterol. MBio. 2018;9(5):e01755–18.
  • Gallis HA, Drew RH, Pickard WW, et al. 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–329.
  • Gray KC, Palacios DS, Dailey I, et al. Amphotericin primarily kills yeast by simply binding ergosterol. Proc Nat Acad Sci. 2012;109(7):2234–2239.
  • Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol. 2014;10(5):400.
  • Allen D, Wilson D, Drew R, et al. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther. 2015;13(6):787–798.
  • Kathiravan MK, Salake AB, Chothe AS, et al. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem. 2012;20(19):5678–5698.
  • Veen M, Stahl U, Lang C. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae. FEMS Yeast Res. 2003;4(1):87–95.
  • Bhattacharya S, Esquivel BD, White TC. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. MBio. 2018;9(4):e01291–18.
  • Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev. 1999;12(1):40–79.
  • Kelly S, Lamb D, Kelly D, et al. Resistance to fluconazole and cross‐resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Δ5, 6‐desaturation. FEBS Lett. 1997;400(1):80–82.
  • Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16(9):603.
  • Gow NA, Latge J-P, Munro CA The fungal cell wall: structure, biosynthesis, and function. The fungal kingdom; 2017. p. 267–292.
  • Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362(9390):1142–1151.
  • Chen SC-A, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections. Drugs. 2011;71(1):11–41.
  • Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature Rev Microbiol. 2008;6(3):187–198.
  • Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis. 2002;2(2):73–85.
  • Coste A, Selmecki A, Forche A, et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell. 2007;6(10):1889–1904.
  • da Silva Ferreira ME, Capellaro JL, Dos Reis Marques E, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother. 2004;48(11):4405–4413.
  • Nascimento AM, Goldman GH, Park S, et al. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother. 2003;47(5):1719–1726.
  • Flowers SA, Colón B, Whaley SG, et al. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015;59(1):450–460.
  • Xiang M-J, Liu J-Y, Ni P-H, et al. Erg11 mutations associated with azole resistance in clinical isolates of Candida albicans. FEMS Yeast Res. 2013;13(4):386–393.
  • Rodero L, Mellado E, Rodriguez AC, et al. G484S amino acid substitution in lanosterol 14-α demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother. 2003;47(11):3653–3656.
  • Flowers SA, Barker KS, Berkow EL, et al. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell. 2012;11(10):1289–1299.
  • Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 2006;313(5785):367–370.
  • Selmecki A, Gerami‐Nejad M, Paulson C, et al. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol Microbiol. 2008;68(3):624–641.
  • Chowdhary A, Sharma C, Hagen F, et al. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol. 2014;9(5):697–711.
  • Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49(8):3264–3273.
  • Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10(3):121–130.
  • Dickson RC, Lester RL. Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2002;1583(1):13–25.
  • Ren J, Hannun Y. Metabolism and roles of sphingolipids in yeast Saccharomyces cerevisiae. Cham, Switzerland: Springer International Publishing; 2017. p. 1–21.
  • Martin SW, Konopka JB. Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell. 2004;3(3):675–684.
  • Nichols CB, Fraser JA, Heitman J. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol Biol Cell. 2004;15(10):4476–4489.
  • Pearson CL, Xu K, Sharpless KE, et al. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol Biol Cell. 2004;15(8):3658–3672.
  • Takeshita N, Higashitsuji Y, Konzack S, et al. Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell. 2008;19(1):339–351.
  • Farnoud AM, Toledo AM, Konopka JB, et al. Raft-like membrane domains in pathogenic microorganisms. In: Current topics in membranes. Vol. 75. Elsevier; 2015. p. 233–268.
  • Rodrigues ML, Travassos LR, Miranda KR, et al. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun. 2000;68(12):7049–7060.
  • Rodrigues ML, Nimrichter L, Oliveira DL, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007;6(1):48–59.
  • Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, et al. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun. 2010;78(4):1601–1609.
  • Vargas G, Rocha JD, Oliveira DL, et al. Compositional and immunobiological analyses of extracellular vesicles released by C andida albicans. Cell Microbiol. 2015;17(3):389–407.
  • Singh A, Del Poeta M. Lipid signalling in pathogenic fungi. Cell Microbiol. 2011;13(2):177–185.
  • Dickson RC. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res. 2008;49(5):909–921.
  • Nagiec MM, Baltisberger JA, Wells GB, et al. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. Proc Nat Acad Sci. 1994;91(17):7899–7902.
  • Buede R, Rinker-Schaffer C, Pinto W, et al. Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J Bacteriol. 1991;173(14):4325–4332.
  • Cheng J, Park T-S, Fischl AS, et al. Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol Cell Biol. 2001;21(18):6198–6209.
  • Miyake Y, Kozutsumi Y, Nakamura S, et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun. 1995;211(2):396–403.
  • Wadsworth JM, Clarke DJ, McMahon SA, et al. The chemical basis of serine palmitoyltransferase inhibition by myriocin. J Am Chem Soc. 2013;135(38):14276–14285.
  • Hanada K, Nishijima M, Fujita T, et al. Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells: a novel evaluation system using an SPT-defective mammalian cell mutant. Biochem Pharmacol. 2000;59(10):1211–1216.
  • He Q, Johnson VJ, Osuchowski MF, et al. Inhibition of serine palmitoyltransferase by myriocin, a natural mycotoxin, causes induction of c-myc in mouse liver. Mycopathologia. 2004;157(3):339–347.
  • de Melo NR, Abdrahman A, Greig C, et al. Myriocin significantly increases the mortality of a non-mammalian model host during Candida pathogenesis. PLoS One. 2013;8:11.
  • Spitzer M, Griffiths E, Blakely KM, et al. Cross‐species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol. 2011;7(1):499.
  • Fornarotto M, Xiao L, Hou Y, et al. Sphingolipid biosynthesis in pathogenic fungi: identification and characterization of the 3-ketosphinganine reductase activity of Candida albicans and Aspergillus fumigatus. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids. 2006;1761(1):52–63.
  • Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol. 2002;5(4):366–371.
  • Warnecke D, Heinz E. Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci. 2003;60(5):919–941.
  • Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem. 2004;279(47):49243–49250.
  • Gupta SD, Gable K, Han G, et al. Tsc10p and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. J Lipid Res. 2009;50(8):1630–1640.
  • Barreto-Bergter E, Pinto MR, Rodrigues ML. Structure and biological functions of fungal cerebrosides. Anais da Academia Brasileira de Ciências. 2004;76(1):67–84.
  • Li S, Du L, Yuen G, et al. Distinct ceramide synthases regulate polarized growth in the filamentous fungus Aspergillus nidulans. Mol Biol Cell. 2006;17(3):1218–1227.
  • Ternes P, Wobbe T, Schwarz M, et al. Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris. J Biol Chem. 2011;286(13):11401–11414.
  • Cheon SA, Bal J, Song Y, et al. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol. 2012;83(4):728–745.
  • Rittenour WR, Chen M, Cahoon EB, et al. Control of glucosylceramide production and morphogenesis by the Bar1 ceramide synthase in Fusarium graminearum. PLoS One. 2011;6(4):e19385.
  • Munshi MA, Gardin JM, Singh A, et al. The role of ceramide synthases in the pathogenicity of Cryptococcus neoformans. Cell Rep. 2018;22(6):1392–1400.
  • Li S, Bao D, Yuen G, et al. basA regulates cell wall organization and asexual/sexual sporulation ratio in Aspergillus nidulans. Genetics. 2007;176(1):243–253.
  • Gault CR, Obeid LM, Hannun YA An overview of sphingolipid metabolism: from synthesis to breakdown. In: Sphingolipids as signaling and regulatory molecules. Springer; 2010. p. 1–23.
  • Cheng J, Park T-S, Chio L-C, et al. Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans. Mol Cell Biol. 2003;23(1):163–177.
  • Humpf H-U, Schmelz E-M, Meredith FI, et al. Acylation of naturally occurring and synthetic 1-deoxysphinganines by ceramide synthase formation of N-palmitoyl-aminopentol produces a toxic metabolite of hydrolyzed fumonisin, AP1, and a new category of ceramide synthase inhibitor. J Biol Chem. 1998;273(30):19060–19064.
  • Delgado A, Casas J, Llebaria A, et al. Inhibitors of sphingolipid metabolism enzymes. Biochimi Biophys Acta (BBA) Biomembr. 2006;1758(12):1957–1977.
  • Mandala SM, Thornton RA, Frommer BR, et al. The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. J Antibiot (Tokyo). 1995;48(5):349–356.
  • Harrison LR, Colvin BM, Greene JT, et al. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J Vet Diagn Invest. 1990;2(3):217–221.
  • Voss KA, Riley RT, Norred W, et al. An overview of rodent toxicities: liver and kidney effects of fumonisins and Fusarium moniliforme. Environ Health Perspect. 2001;109(suppl 2):259–266.
  • Kim HJ, Qiao Q, Toop HD, et al. A fluorescent assay for ceramide synthase activity. J Lipid Res. 2012;53(8):1701–1707.
  • Michel C, van Echten-deckert G, Rother J, et al. Characterization of ceramide synthesis a dihydroceramide desaturase introduces the 4, 5-trans-double bond of sphingosine at the level of dihydroceramide. J Biol Chem. 1997;272(36):22432–22437.
  • Ternes P, Franke S, Zähringer U, et al. Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem. 2002;277(28):25512–25518.
  • Fernandes C, De Castro P, Singh A, et al. Functional characterization of the A spergillus nidulans glucosylceramide pathway reveals that LCB Δ8‐desaturation and C9‐methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity. Mol Microbiol. 2016;102(3):488–505.
  • Oura T, Kajiwara S. Disruption of the sphingolipid Δ8-desaturase gene causes a delay in morphological changes in Candida albicans. Microbiology. 2008;154(12):3795–3803.
  • Noble SM, French S, Kohn LA, et al. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet. 2010;42(7):590.
  • Singh A, Wang H, Silva LC, et al. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol. 2012;14(4):500–516.
  • Del Poeta M, Nimrichter L, Rodrigues ML, et al. Synthesis and biological properties of fungal glucosylceramide. PLoS Pathog. 2014;10(1):e1003832.
  • Halter D, Neumann S, van Dijk SM, et al. Pre-and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol. 2007;179(1):101–115.
  • Rittershaus PC, Kechichian TB, Allegood JC, et al. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest. 2006;116(6):1651–1659.
  • Oura T, Kajiwara S. Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation. Microbiology. 2010;156(4):1234–1243.
  • Levery SB, Momany M, Lindsey R, et al. Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP‐Glc: ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett. 2002;525(1–3):59–64.
  • Mor V, Rella A, Farnoud AM, et al. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio. 2015;6(3):e00647–15.
  • Lazzarini C, Haranahalli K, Rieger R, et al. Acylhydrazones as antifungal agents targeting the synthesis of fungal sphingolipids. Antimicrob Agents Chemother. 2018;62(5):e00156–18.
  • Haranahalli K, Lazzarini C, Sun Y, et al. SAR studies on aromatic acylhydrazone-based inhibitors of fungal sphingolipid synthesis as next-generation antifungal agents. J Med Chem. 2019;62(17):8249–8273.
  • Rodrigues ML, Shi L, Barreto-Bergter E, et al. Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol. 2007;14(10):1372–1376.
  • Mor V, Farnoud AM, Singh A, et al. Glucosylceramide administration as a vaccination strategy in mouse models of cryptococcosis. PloS One. 2016;11(4):e0153853.
  • Heidler SA, Radding JA. Inositol phosphoryl transferases from human pathogenic fungi. Biochim Biophys Acta Mol Basis Dis. 2000;1500(1):147–152.
  • Heidler SA, Radding JA. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to the antifungal agent aureobasidin A (LY295337). Antimicrob Agents Chemother. 1995;39(12):2765–2769.
  • Hashida-Okado T, Ogawa A, Endo M, et al. AUR1, a novel gene conferring aureobasidin resistance onSaccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet. 1996;251(2):236–244.
  • Luberto C, Toffaletti DL, Wills EA, et al. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 2001;15(2):201–212.
  • TAKESAKO K, KURODA H, INOUE T, et al. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J Antibiot (Tokyo). 1993;46(9):1414–1420.
  • Nagiec MM, Nagiec EE, Baltisberger JA, et al. Sphingolipid synthesis as a target for antifungal drugs complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem. 1997;272(15):9809–9817.
  • Georgopapadakou NH. Antifungals targeted to sphingolipid synthesis: focus on inositol phosphorylceramide synthase. Expert Opin Investig Drugs. 2000;9(8):1787–1796.
  • Sugimoto Y, Sakoh H, Yamada K. IPC synthase as a useful target for antifungal drugs. Curr Drug Targets. 2004;4(4):311–322.
  • Harris GH, Shafiee A, Cabello MA, et al. Inhibition of fungal sphingolipid biosynthesis by rustmicin, galbonolide B and their new 21-hydroxy analogs. J Antibiot (Tokyo). 1998;51(9):837–844.
  • Mandala SM, Thornton RA, Rosenbach M, et al. Khafrefungin, a novel inhibitor of sphingolipid synthesis. J Biol Chem. 1997;272(51):32709–32714.
  • Jenkins GM, Richards A, Wahl T, et al. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J Biol Chem. 1997;272(51):32566–32572.
  • Chung N, Jenkins G, Hannun YA, et al. Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem. 2000;275(23):17229–17232.
  • Rosenberg A, Ene IV, Bibi M, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun. 2018;9(1):1–14.
  • Mandala SM, Thornton RA, Milligan J, et al. Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. J Biol Chem. 1998;273(24):14942–14949.
  • Mille C, Janbon G, Delplace F, et al. Inactivation of CaMIT1 inhibits Candida albicans phospholipomannan β-mannosylation, reduces virulence, and alters cell wall protein β-mannosylation. J Biol Chem. 2004;279(46):47952–47960.
  • Kotz A, Wagener J, Engel J, et al. The mitA gene of Aspergillus fumigatus is required for mannosylation of inositol-phosphorylceramide, but is dispensable for pathogenicity. Fungal Genet Biol. 2010;47(2):169–178.
  • Prasad T, Saini P, Gaur NA, et al. Functional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans. Antimicrob Agents Chemother. 2005;49(8):3442–3452.
  • Gao J, Wang H, Li Z, et al. Candida albicans gains azole resistance by altering sphingolipid composition. Nat Commun. 2018;9(1):1–14.
  • Bossche HV, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol Ther. 1995;67(1):79–100.
  • Singh A, MacKenzie A, Girnun G, et al. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res. 2017;58(10):2017–2036.
  • Fabri JHTM, Godoy NL, Rocha MC, et al. The AGC kinase YpkA regulates sphingolipids biosynthesis and physically interacts with SakA MAP kinase in Aspergillus fumigatus. Front Microbiol. 2019;9:3347.
  • Lattif AA, Mukherjee PK, Chandra J, et al. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology. 2011;157(Pt 11):3232.
  • Prasad R, Singh A. Lipids of Candida albicans and their role in multidrug resistance. Curr Genet. 2013;59(4):243–250.
  • Ejsing CS, Sampaio JL, Surendranath V, et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Nat Acad Sci. 2009;106(7):2136–2141.
  • Cowen LE, Sanglard D, Howard SJ, et al. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2015;5(7):a019752.
  • Ami RB, Lewis R, Kontoyiannis DP. Immunopharmacology of modern antifungals. Clinl Infect Dis. 2008;47(2):226–235.
  • Fernandes CM, Goldman GH, Del Poeta M. Biological roles played by sphingolipids in dimorphic and filamentous fungi. MBio. 2018;9(3):e00642–18.
  • Rollin-Pinheiro R, Singh A, Barreto-Bergter E, et al. Sphingolipids as targets for treatment of fungal infections. Future Med Chem. 2016;8(12):1469–1484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.