1,428
Views
19
CrossRef citations to date
0
Altmetric
Review

Repurposing of well-known medications as antivirals: hydroxychloroquine and chloroquine – from HIV-1 infection to COVID-19

, , & ORCID Icon
Pages 1119-1133 | Received 24 Apr 2020, Accepted 02 Jul 2020, Published online: 13 Jul 2020

References

  • Weniger H. Review of side effects and toxicity of chloroquine. Bull World Health. 1979;79:906.
  • Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73.
  • Wang LF, Lin YS, Huang NC, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res. 2015;35(3):143–156.
  • Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30(4):297–308.
  • Chiang G, Sassaroli M, Louie M, et al. Inhibition of HIV-1 replication by hydroxychloroquine: mechanism of action and comparison with zidovudine. Clin Ther. 1996;18(6):1080–1092.
  • González-Hernández I, Aguirre-Cruz L, Sotelo J, et al. Distribution of hydroxychloroquine in lymphoid tissue in a rabbit model for HIV infection. Antimicrob Agents Chemother. 2014;58(1):584–586.
  • Routy JP, Angel JB, Patel M, et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16(1):48–56.
  • Piconi S, Parisotto S, Rizzardini G, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118(12):3263–3272.
  • Paton NI, Goodall RL, Dunn DT, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA. 2012;308(4):353–361.
  • Jiang MC, Lin JK, Chen SS. Inhibition of HIV-1 Tat-mediated transactivation by quinacrine and chloroquine. Biochem Biophys Res Commun. 1996;226(1):1–7.
  • Rayne F, Vendeville A, Bonhoure A, et al. The ability of chloroquine to prevent tat-induced cytokine secretion by monocytes is implicated in its in vivo anti-human immunodeficiency virus type 1 activity. J Virol. 2004;78(21):12054–12057.
  • Naarding MA, Baan E, Pollakis G, et al. Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology. 2007;4(1):6.
  • van Loosdregt J, Spreafico R, Rossetti M, et al. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J Allergy Clin Immunol. 2013;131(5):1443–6.e1.
  • Brouwers J, Vermeire K, Schols D, et al. Development and in vitro evaluation of chloroquine gels as microbicides against HIV-1 infection. Virology. 2008;378(2):306–310.
  • Chen Y, Traore YL, Yang S, et al. Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation. J Control Release. 2018May;277:102–113.
  • Traore YL, Chen Y, Bernier AM, et al. Impact of hydroxychloroquine-loaded polyurethane intravaginal rings on Lactobacilli. Antimicrob Agents Chemother. 2015;59(12):7680–7686.
  • Murray SM, Down CM, Boulware DR, et al. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol. 2010;84(22):12082–12086.
  • Paton NI, Aboulhab J. Hydroxychloroquine, hydroxyurea and didanosine as initial therapy for HIV-infected patients with low viral load: safety, efficacy and resistance profile after 144 weeks. HIV Med. 2005;6(1):13–20.
  • Sperber K, Chiang G, Chen H, et al. Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clin Ther. 1997;19(5):913–923.
  • Sperber K, Louie M, Kraus T, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther. 1995;17(4):622–636.
  • Leroux-Roels G, Bourguignon P, Willekens J, et al. Immunogenicity and safety of a booster dose of an investigational adjuvanted polyprotein HIV-1 vaccine in healthy adults and effect of administration of chloroquine. Clin Vaccine Immunol. 2014;21(3):302–311.
  • Neely M, Kalyesubula I, Bagenda D, et al. Effect of chloroquine on human immunodeficiency virus (HIV) vertical transmission. Afr Health Sci. 2003;3(2):61–67.
  • Pardridge WM, Yang J, Diagne A. Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes. Immunol Lett. 1998;64(1):45–47.
  • Savarino A, Gennero L, Chen HC, et al. Anti-HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. AIDS. 2001;15(17):2221–2229.
  • Martina BE, Koraka P, Osterhaus AD. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev. 2009;22(4):564–581.
  • Borges MC, Castro LA, Fonseca BA. Chloroquine use improves dengue-related symptoms. Mem Inst Oswaldo Cruz. 2013;108(5):596–599.
  • Tsai YT, Chang SY, Lee CN, et al. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol. 2009;11(4):604–615.
  • Randolph VB, Winkler G, Stollar V. Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology. 1990;174(2):450–458.
  • Gandini M, Gras C, Azeredo EL, et al. Dengue virus activates membrane TRAIL relocalization and IFN-α production by human plasmacytoid dendritic cells in vitro and in vivo. PLoS Negl Trop Dis. 2013 6;7(6):e2257.
  • Tricou V, Minh NN, Van TP, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Negl Trop Dis. 2010;4(8):e785.
  • Farias KJ, Machado PR, Muniz JA, et al. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol. 2015;28(3):161–169.
  • Farias KJ, Machado PR, da Fonseca BA. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells. ScientificWorldJournal. 2013;2013:282734.
  • Farias KJ, Machado PR, de Almeida Junior RF, et al. Chloroquine interferes with dengue-2 virus replication in U937 cells. Microbiol Immunol. 2014;58(6):318–326.
  • Han Y, Pham HT, Xu H, et al. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J Med Virol. 2019;91(7):1182–1190.
  • Li C, Zhu X, Ji X, et al. Chloroquine, a FDA-approved drug, prevents Zika virus infection and its associated congenital microcephaly in mice. EBioMedicine. 2017;24:189–194.
  • Delvecchio R, Higa LM, Pezzuto P, et al. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses. 2016;8(12). DOI:10.3390/v8120322
  • Cao B, Parnell LA, Diamond MS, et al. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017;214(8):2303–2313.
  • Shiryaev SA, Mesci P, Pinto A, et al. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep. 2017;7(1):15771.
  • Plantone D, Koudrivtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Invest. 2018;38(8):653–671.
  • Brighton SW. Chloroquine phosphate treatment of chronic chikungunya arthritis. S Afr Med J. 1984;66(6):217–218.
  • De Lamballerie X, Boisson V, Reynier JC, et al. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis. 2008;8(6):837–839.
  • Roques P, Thiberville SD, Dupuis-Maguiraga L, et al. Paradoxical effect of chloroquine treatment in enhancing chikungunya virus infection. Viruses. 2018;10(5):5.
  • Renapurkar DK. Efficacy of chloroquine in management of chikungunya: a phase IV clinical trial. Int J Pharma Bio Sci. 2011;2(1):407–412.
  • Ahmed M, Shantharam N, Visweswara Reddy YJ. Randomized clinical trial in chikungunya arthritis cases. J Evol Med Dent Sci. 2012;1(5):841–847.
  • Chopra A, Saluja M, Venugopalan A. Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthritis Rheumatol. 2014;66(2):319–326.
  • Ravindran V, Alias G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: a 24-week randomized controlled open label study. Clin Rheumatol. 2017;36(6):1335–1340.
  • Khan M, Santhosh SR, Tiwari M, et al. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. J Med Virol. 2010;82(5):817–824.
  • Peymani P, Ghavami S, Yeganeh B, et al. Effect of chloroquine on some clinical and biochemical parameters in non-response chronic hepatitis C virus infection patients: pilot clinical trial. Acta Biomed. 2016;87(1):46–53.
  • Kouroumalis EA, Koskinas J. Treatment of chronic active hepatitis B (CAH B) with chloroquine: a preliminary report. Ann Acad Med Singapore. 1986;15(2):149–152.
  • Helal GK, Gad MA, Abd-Ellah MF, et al. Hydroxychloroquine augments early virological response to pegylated interferon plus ribavirin in genotype-4 chronic hepatitis C patients. J Med Virol. 2016;88(12):2170–2178.
  • Accapezzato D, Visco V, Francavilla V, et al. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J Exp Med. 2005;202(6):817–828.
  • Mizui T, Yamashina S, Tanida I, et al. Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J Gastroenterol. 2010;45(2):195–203.
  • Chandramohan M, Vivekananthan SC, Sivakumar D, et al. Preliminary report of anti-hepatitis C virus activity of chloroquine and hydroxychloroquine in huh-5-2 cell line. Indian J Pharm Sci. 2006;68(4):538–540.
  • Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;34(4):191–196.
  • Du X, Zuo X, Meng F, et al. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem Biophys Res Commun. 2020;522(4):862–868.
  • Dowall SD, Bosworth A, Watson R, et al. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J Gen Virol. 2015;96(12):3484–3492.
  • Long J, Wright E, Molesti E, et al. Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry. Version 2. F1000Res. 2015;4(30). DOI:10.12688/f1000research.6085.2
  • Falzarano D, Safronetz D, Prescott J, et al. Lack of protection against ebola virus from chloroquine in mice and hamsters. Emerg Infect Dis. 2015;21(6):1065–1067.
  • Madrid PB, Panchal RG, Warren TK, et al. Evaluation of ebola virus inhibitors for drug repurposing. ACS Infect Dis. 2015 Jul 10;1(7):317–326.
  • Kouznetsova J, Sun W, Martínez-Romero C, et al. Identification of 53 compounds that block Ebola virus-like particle entry via a repurposing screen of approved drugs. Emerg Microbes Infect. 2014;3(12):e84.
  • Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2(1):69.
  • Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264–268.
  • Kono M, Tatsumi K, Imai AM, et al. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res. 2008;77(2):150–152.
  • Barnard DL, Day CW, Bailey K, et al. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir Chem Chemother. 2006;17(5):275–284.
  • Dyall J, Coleman CM, Hart BJ, et al. Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885–4893.
  • de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-Approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875–4884.
  • Cong Y, Hart BJ, Gross R, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One. 2018 22;13(3):e0194868.
  • Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. DOI:10.1093/cid/ciaa237
  • Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;20:105949.
  • WHO Director-General’s opening remarks at the media briefing on COVID-19-11. 2020 Mar [cited 2020 Apr 10]. Available from: [https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-atthe- media-briefing-on-covid-19—11-march-2020]
  • Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.
  • Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):16.
  • Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents. 2020;55(3):105923.
  • Fantini J, Scala CD, Chahinian H, et al. Structural and molecular modelling studies reveal a new mech- anism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020 Apr;3(5):105960.
  • Derendorf H. Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. Int J Antimicrob Agents. 2020;7(6):106007.
  • Roldan EQ, Biasiotto G, Magro P, et al. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): a role for iron homeostasis? Pharmacol Res. 2020;158:104904.
  • Wolfram J, Nizzero S, Liu H, et al. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep. 2017;7(1):13738.
  • Devaux CA, Rolain JM, Coson P, et al. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19. Int J Antimicrob Agents. 2020;12(5):105938.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.
  • Müller C, Hardt M, Schwudke D, et al. Inhibition of cytosolic phospholipase a(2)α impairs an early step of coronavirus replication in cell culture. J Virol. 2018;92(4):e01463–17.
  • Ha DR, Kuo J, Aung PS, et al. Outpatient hydroxychloroquine prescribing at a large academic health system during the COVID-19 pandemic. Infect Control Hosp Epidemiol. 2020;1–2. DOI:10.1017/ice.2020.243
  • Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849.
  • Mahevas M, Tran VT, Roumier M, et al. Clinical efficacy of hydroxychloroquine in patients with COVID-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. 2020;369:m1844.
  • Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in NewYork State. JAMA. 2020;e208630. DOI:10.1001/jama.2020.8630
  • Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;NEJMoa2012410. DOI:10.1056/NEJMoa2012410
  • Borba MGS, Val FFA, Sampaio VS, et al. Effect of high vs lowdoses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection a randomized clinical trial. JAMA Network Open. 2020 24;3(4):e208857.
  • Indian Council of Medical Research [Internet]. Advisory on the use of hydroxychloroquin as prophylaxis for SARSCoV2 infection. [cited 2020 Mar 24]. Available from: https://www.mohfw.gov.in/pdf/AdvisoryontheuseofHydroxy chloroquinasprophylaxisforSARSCoV2infection.pdf
  • Chorin E, Wadhwani L, Magnani S, et al. Torsade De Pointes in Patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm. 2020;S1547-5271(20):30435–5.
  • Writing Group of the Johns Hopkins University and Johns Hopkins Hospital COVID-19 Treatment Guidance Working Group [Internet]. JHMI clinical guidance for available pharmacologic therapies for COVID-19. [cited 2020 Apr 10]. Available from: https://www.hopkinsguides.com/hopkins/ub?cmd=repview&t ype=479-1112&name=3_538747_PDF
  • Agrawal S, Goel AD, Gupta N. Emerging prophylaxis strategies against COVID-19. Monaldi Arch Chest Dis. 2020;90(1). DOI:10.4081/monaldi.2020.1289
  • Shah S, Das S, Jain A, et al. A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease-19 (COVID-19). Int J Rheum Dis. 2020;23(5):613–619.
  • Gendelman O, Amital H, Bragazzi NL, et al. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: insights from a large healthcare database analysis. Autiommun Rev. 2020;19(7):102566.
  • Perinel S, Launay M, Botelho-Nevers É, et al. Towards optimization of hydroxychloroquine dosing in intensive care unit COVID-19 patients. Clin Infect Dis. 2020. DOI:10.1093/cid/ciaa394
  • Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci). 2020;49(1). DOI:10.3785/j.issn.1008-9292.2020.03.03
  • Million M, Lagier JC, Gautret P, et al. Full-length title: early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis. 2020;101738. DOI:10.1016/j.tmaid.2020.101738
  • Huang M, Tang T, Pang P, et al. Treating COVID-19 with chloroquine. J Mol Cell Biol. 2020;12(4):322–325.
  • Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis. 2020;34:101663.
  • Martinson JA, Montoya CJ, Usuga X, et al. Chloroquine modulates HIV-1-induced plasmacytoid dendritic cell alpha interferon: implication for T-cell activation. Antimicrob Agents Chemother. 2010;54(2):871–881.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.