3,615
Views
7
CrossRef citations to date
0
Altmetric
Special report

Transmission dynamics of dengue and chikungunya in a changing climate: do we understand the eco-evolutionary response?

ORCID Icon, , &
Pages 1187-1193 | Received 23 Feb 2020, Accepted 08 Jul 2020, Published online: 01 Aug 2020

References

  • Weaver SC, Charlier C, Vasilakis N, et al. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. 2018;69:395–408. Epub 2017/ 08/28. PubMed PMID: 28846489.
  • Stanaway JD, Shepard DS, Undurraga EA, et al. The global burden of dengue: an analysis from the global burden of disease study 2013. Lancet Infect Dis. 2016;16(6):712–723. Epub 2016/ 02/10. PubMed PMID: 26874619.
  • Anyamba A, Chretien J-P, Britch SC, et al. Global disease outbreaks associated with the 2015–2016 El Niño event. Sci Rep. 2019;9(1):1930. 10.1038/s41598-018-38034-z. PubMed PMID: 30760757.
  • Khan K, Bogoch I, Brownstein JS, et al. Assessing the origin of and potential for international spread of chikungunya virus from the Caribbean. PLoS Curr. 2014;6: ecurrents.outbreaks.2134a0a7bf37fd8d388181539fea2da5. DOI:10.1371/currents.outbreaks.2134a0a7bf37fd8d388181539fea2da5. PubMed PMID: 24944846.
  • Smith KF, Goldberg M, Rosenthal S, et al. Global rise in human infectious disease outbreaks. J R Soc Interface. 2014;11(101):20140950. PubMed PMID: 25401184.
  • Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. Epub 2013/ 04/07. PubMed PMID: 23563266.
  • Kraemer MUG, Reiner RC Jr., Brady OJ, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4(5):854–863. Epub 2019/03/06. PubMed PMID: 30833735; PubMed Central PMCID: PMCPMC6522366.
  • Rocklov J, Tozan Y, Ramadona A, et al. Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerg Infect Dis. 2019;25(6):1041–1049. Epub 2019/05/21. PubMed PMID: 31107221.
  • Rocklöv J, Tozan Y. Climate change and the rising infectiousness of dengue. Emerging Topics Life Sci. 2019:ETLS20180123. DOI:10.1042/etls20180123
  • Liu-Helmersson J, Quam M, Wilder-Smith A, et al. Climate change and Aedes vectors: 21st century projections for dengue transmission in Europe. EBioMedicine. 2016;7:267–277. Epub 2016/06/21. PubMed PMID: 27322480; PubMed Central PMCID: PMCPMC4909611.
  • Stewart-Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal ecuador. Am J Trop Med Hyg. 2013;88(5):971–981. Epub 2013/03/13. PubMed PMID: 23478584; PubMed Central PMCID: PMCPMC3752767.
  • Ramadona AL, Tozan Y, Lazuardi L, et al. A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia. PLoS Negl Trop Dis. 2019;13(4):e0007298. Epub 2019/04/16. PubMed PMID: 30986218; PubMed Central PMCID: PMCPMC6483276.
  • Struchiner CJ, Rocklov J, Wilder-Smith A, et al. Increasing dengue incidence in Singapore over the past 40 years: population growth, climate and mobility. PLoS One. 2015;10(8):e0136286. Epub 2015/09/01. PubMed PMID: 26322517; PubMed Central PMCID: PMCPMC4554991.
  • Christiansen-Jucht C, Parham PE, Saddler A, et al. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasit Vectors. 2014;7:489. . PubMed PMID: 25367091.
  • Linthicum KJAA, Britch SC, Small JL, et al. Climate teleconnections, weather extremes, and vector-borne disease outbreaks. Washington (DC): National Academies Press (US); 2016. Available from https://www.ncbi.nlm.nih.gov/books/NBK390440/
  • Alto BW, Bettinardi D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am J Trop Med Hyg. 2013;88(3):497–505. Epub 2013/ 02/06. PubMed PMID: 23382163; PubMed Central PMCID: PMCPMC3592531.
  • Hii YL, Rocklöv J, Ng N, et al. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action. 2009;2. DOI:10.3402/gha.v2i0.2036. PubMed PMID: 20052380.
  • Lambrechts L, Paaijmans KP, Fansiri T, et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Nat Acad Sci. 2011;108(18):7460–7465.
  • Peixóto JP, Oort AH. Physics of climate. Rev Mod Phys. 1984;56(3):365–429.
  • Robertson AW, Kumar A, Peña M, et al. Improving and promoting subseasonal to seasonal prediction. Bull Am Meteorol Soc. 2015;96(3):ES49–ES53.
  • Vitart F, Ardilouze C, Bonet A, et al. The subseasonal to seasonal (S2S) prediction project database. Bull Am Meteorol Soc. 2017;98(1):163–173.
  • García-Serrano J, Doblas-Reyes FJ. On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ENSEMBLES decadal hindcast. Clim Dyn. 2012;39(7):2025–2040
  • Johnson NC, Feldstein SB. The continuum of North pacific sea level pressure patterns: intraseasonal, interannual, and interdecadal variability. J Clim. 2010;23(4):851–867.
  • Muñoz ÁG, Goddard L, Robertson AW, et al. Cross–time scale interactions and rainfall extreme events in Southeastern South America for the austral summer. Part I: potential predictors. J Clim. 2015;28(19):7894–7913.
  • Muñoz ÁG, Goddard L, Mason SJ, et al. Cross–time scale interactions and rainfall extreme events in Southeastern South America for the austral summer. Part II: predictive skill. J Clim. 2016;29(16):5915–5934.
  • Zhang C. Madden–Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc. 2013;94(12):1849–1870.
  • Chen X, Ling J, Li C. Evolution of the Madden–Julian oscillation in two types of El Niño. J Clim. 2016;29(5):1919–1934.
  • Hendon HH, Wheeler MC, Zhang C. Seasonal dependence of the MJO–ENSO relationship. J Clim. 2007;20(3):531–543.
  • Zebiak SE, Orlove B, Muñoz ÁG, et al. Investigating El Niño-Southern oscillation and society relationships. WIREs Clim Change. 2015;6(1):17–34.
  • Smith DL, Battle KE, Hay SI, et al. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8(4):e1002588. Epub 2012/04/13. PubMed PMID: 22496640; PubMed Central PMCID: PMCPMC3320609.
  • Chan M, Johansson MA. The incubation periods of dengue viruses. PLoS One. 2012;7(11):e50972. Epub 2012/12/12. PubMed PMID: 23226436; PubMed Central PMCID: PMCPMC3511440.
  • Blanford JI, Blanford S, Crane RG, et al. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1300.
  • Paaijmans KP, Blanford S, Bell AS, et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A. 2010;107(34):15135–15139. Epub 2010/08/09. PubMed PMID: 20696913.
  • Liu-Helmersson J, Stenlund H, Wilder-Smith A, et al. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. Plos One. 2014;9(3):e89783.
  • Ramadona AL, Lazuardi L, Hii YL, et al. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One. 2016;11(3):e0152688. Epub 2016/04/01. PubMed PMID: 27031524; PubMed Central PMCID: PMCPMC4816319.
  • Sewe M, Rocklov J, Williamson J, et al. The association of weather variability and under five malaria mortality in KEMRI/CDC HDSS in Western Kenya 2003 to 2008: a time series analysis. Int J Environ Res Public Health. 2015;12(2):1983–1997. Epub 2015/ 02/13. PubMed PMID: 25674784; PubMed Central PMCID: PMCPMC4344705.
  • Sewe MO, Ahlm C, Rocklov J. Remotely sensed environmental conditions and malaria mortality in three malaria endemic regions in Western Kenya. PLoS One. 2016;11(4):e0154204. Epub 2016/04/27. PubMed PMID: 27115874; PubMed Central PMCID: PMCPMC4845989.
  • Chen MJ, Lin CY, Wu YT, et al. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS One. 2012;7(6):e34651. Epub 2012/06/28. PubMed PMID: 22737206; PubMed Central PMCID: PMCPMC3380951.
  • Johansson MA, Cummings DA, Glass GE. Multiyear climate variability and dengue–El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med. 2009;6(11):e1000168. Epub 2009/ 11/18. PubMed PMID: 19918363; PubMed Central PMCID: PMCPMC2771282.
  • Liyanage P, Tissera H, Sewe M, et al. A spatial hierarchical analysis of the temporal influences of the El Nino-Southern oscillation and weather on dengue in Kalutara District, Sri Lanka. Int J Environ Res Public Health. 2016;13(11). Epub 2016/11/10. DOI:10.3390/ijerph13111087. PubMed PMID: 27827943; PubMed Central PMCID: PMCPMC5129297.
  • Liyanage P, Rocklöv J, Tissera H, et al. Evaluation of intensified dengue control measures with interrupted time series analysis in the Panadura medical officer of health division in Sri Lanka: a case study and cost-effectiveness analysis. Lancet Planet Health. 2019;3(5):e211–e8.
  • Fitzpatrick C, Haines A, Bangert M, et al. An economic evaluation of vector control in the age of a dengue vaccine. PLoS Negl Trop Dis. 2017;11(8):e0005785. PubMed PMID: 28806786; PubMed Central PMCID: PMCPMC5573582.
  • Chen IC, Hill JK, Ohlemuller R, et al. Rapid range shifts of species associated with high levels of climate warming. Science (New York, NY). 2011;333(6045):1024–1026. Epub 2011/ 08/20. PubMed PMID: 21852500.
  • Pecl GT, Araujo MB, Bell JD, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science (New York, NY). 2017; 355(6332). Epub 2017/ 04/01. DOI:10.1126/science.aai9214. PubMed PMID: 28360268.
  • Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change. Nature. 2002;416(6879):389–395. Epub 2002/03/29. PubMed PMID: 11919621.
  • Urban MC, Tewksbury JJ, Sheldon KS. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc Biol Sci. 2012;279(1735):2072–2080. Epub 2012/ 01/06. PubMed PMID: 22217718; PubMed Central PMCID: PMCPMC3311897.
  • Hardin G. The competitive exclusion principle. Science (New York, NY). 1960;131(3409):1292–1297. Epub 1960/ 04/29. PubMed PMID: 14399717.
  • Tilman D. Competition and biodiversity in spatially structured habitats. Ecology. 1994;75(1):2–16.
  • MacArthur RH. Geographical ecology. New York: Harper and Row; 1972.
  • Weterings R, Umponstira C, Buckley HL. Landscape variation influences trophic cascades in dengue vector food webs. Sci Adv. 2018;4(2):eaap9534. Epub 2018/03/07. PubMed PMID: 29507879; PubMed Central PMCID: PMCPMC5833996.
  • Sjodin H, Ripa J, Lundberg P. Principles of niche expansion. Proc Biol Sci. 2018;285(1893):20182603. Epub 2019/ 04/10. PubMed PMID: 30963885; PubMed Central PMCID: PMCPMC6304067.
  • Lavergne S, Mouquet N, Thuiller W, et al. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst. 2010;41(1):321–350.
  • Gunderson LH. Ecological resilience—in theory and application. Annu Rev Ecol Syst. 2000;31(1):425–439.
  • Tabachnick WJ. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Annu Rev Virol. 2016;3(1):125–145. Epub 2016/ 08/03. PubMed PMID: 27482902.
  • Powell JR. An evolutionary perspective on vector-borne diseases. Front Genet. 2019;10:1266. Epub 2020/ 01/11. PubMed PMID: 31921304; PubMed Central PMCID: PMCPMC6929172.
  • Gienapp P, Teplitsky C, Alho JS, et al. Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol. 2008;17(1):167–178. Epub 2008/ 01/05. PubMed PMID: 18173499.
  • Bargielowski I, Lounibos LP. Rapid evolution of reduced receptivity to interspecific mating in the dengue vector Aedes aegypti in response to satyrization by invasive Aedes albopictus. Evol Ecol. 2014;28(1):193–203. Epub 2014/02/25. PubMed PMID: 24563572; PubMed Central PMCID: PMCPMC3927939.
  • Faye O, Freire CC, Iamarino A, et al. Molecular evolution of Zika virus during its emergence in the 20(th) century. PLoS Negl Trop Dis. 2014;8(1):e2636. Epub 2014/ 01/15. PubMed PMID: 24421913; PubMed Central PMCID: PMCPMC3888466.
  • Bennett SN, Holmes EC, Chirivella M, et al. Selection-driven evolution of emergent dengue virus. Mol Biol Evol. 2003;20(10):1650–1658. Epub 2003/07/02. PubMed PMID: 12832629.
  • Liu-Helmersson J, Brannstrom A, Sewe MO, et al. Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector aedes aegypti under climate change scenarios. Front Public Health. 2019;7:148. Epub 2019/06/30. PubMed PMID: 31249824; PubMed Central PMCID: PMCPMC6582658.
  • Weaver SC. Evolutionary influences in arboviral disease. Curr Top Microbiol Immunol. 2006;299:285–314. Epub 2006/03/30. PubMed PMID: 16568903.
  • Tsetsarkin KA, Weaver SC. Sequential adaptive mutations enhance efficient vector switching by Chikungunya virus and its epidemic emergence. PLoS Pathog. 2011;7(12):e1002412. Epub 2011/12/17. PubMed PMID: 22174678; PubMed Central PMCID: PMCPMC3234230.
  • Moudy RM, Meola MA, Morin LL, et al. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg. 2007;77(2):365–370. Epub 2007/08/11.PubMed PMID: 17690414.
  • Dieckmann U, Law R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol. 1996;34(5–6):579–612. Epub 1996/ 01/01. PubMed PMID: 8691086.
  • Tabachnick WJ. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol. 2010;213(6):946–954.
  • Muñoz ÁG, Yang X, Vecchi GA, et al. A weather-type-based cross-time-scale diagnostic framework for coupled circulation models. J Clim. 2017;30(22):8951–8972.
  • Benedict JJ, Pritchard MS, Collins WD. Sensitivity of MJO propagation to a robust positive Indian Ocean dipole event in the superparameterized CAM. J Adv Model Earth Syst. 2015;7(4):1901–1917.
  • Thomson M, Mason S. Climate information for public health action. London: Routledge; 2018.
  • Shukla J, Palmer TN, Hagedorn R, et al. Toward a new generation of world climate research and computing facilities. Bull Am Meteorol Soc. 2010;91(10):1407–1412.
  • Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med Clin North Am. 2008;92(6):1377–90, x. Epub 2008/ 12/09. PubMed PMID: 19061757.
  • Greene AM, Goddard L, Cousin R. Web tool deconstructs variability in twentieth-century climate. Eos Trans Am Geophys Union. 2011;92(45):397–398.
  • Muñoz ÁG, Thomson MC, Stewart-Ibarra AM, et al. Could the recent zika epidemic have been predicted? Front Microbiol. 2017;8:1291. PubMed PMID: 28747901.
  • Thomson MC, Muñoz ÁG, Cousin R, et al. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes. Infect Dis Poverty. 2018;7(1):81. 10.1186/s40249-018-0460-1. PubMed PMID: 30092816.
  • Rocklöv J, Quam MB, Sudre B, et al. Assessing seasonal risks for the introduction and mosquito-borne spread of zika virus in Europe. EBioMedicine. 2016;9:250–256. PubMed PMID: 27344225.
  • Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17(1):136–173. Epub 2004/01/17. PubMed PMID: 14726459; PubMed Central PMCID: PMCPMC321469.
  • Campbell LP, Luther C, Moo-Llanes D, et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1665). Epub 2015/ 02/18. DOI:10.1098/rstb.2014.0135. PubMed PMID: 25688023; PubMed Central PMCID: PMCPMC4342968.