825
Views
17
CrossRef citations to date
0
Altmetric
Review

Quorum sensing: a new prospect for the management of antimicrobial-resistant infectious diseases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 571-586 | Received 29 Jul 2020, Accepted 26 Oct 2020, Published online: 08 Dec 2020

References

  • Abisado RG, Benomar S, Klaus JR, et al. Bacterial quorum sensing and microbial community interactions [research support, n.i.h., extramural research support, U.S. Gov’t, non-P.H.S. review]. mBio. 2018 May 22;9(3):e02331-17. DOI:10.1128/mBio.02331-17.
  • Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nat Rev Microbiol. 2008 Feb;6(2):111–120.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Cold Spring Harbor Perspect Med. 2012 Nov 1;2(11):a012427. DOI:10.1101/cshperspect.a012427.
  • Remy B, Mion S, Plener L, et al. Interference in bacterial quorum sensing: a biopharmaceutical perspective [review]. Front Pharmacol. 2018;9:203.
  • GM C. The origin and evolution of cells. Sunderland (MA): Sinauer Associates; 2000. [Books]
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation [Research Support, N.I.H., Intramural Review]. Cell. 2014 Mar 27;157(1):121–141.
  • Clapp M, Aurora N, Herrera L, et al. Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract. 2017 Sep 15;7(4):987.
  • LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens [Research Support, N.I.H., Extramural Review]. Microbiol Mol Biol Rev. 2013 Mar;77(1):73–111.
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review]. J Bacteriol. 1994 Jan;176(2):269–275.
  • Eberhard A. Inhibition and activation of bacterial luciferase synthesis. J Bacteriol. 1972 Mar;109(3):1101–1105.
  • Turovskiy Y, Kashtanov D, Paskhover B, et al. Quorum sensing: fact, fiction, and everything in between [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Adv Appl Microbiol. 2007;62:191–234.
  • Asfour HZ. Anti-quorum sensing natural compounds [review]. J Microsc Ultrastruct. 2018 Jan-Mar;6(1):1–10.
  • Heilmann S, Krishna S, Kerr B. Why do bacteria regulate public goods by quorum sensing?-How the shapes of cost and benefit functions determine the form of optimal regulation. Front Microbiol. 2015;6:767.
  • Darch SE, West SA, Winzer K, et al. Density-dependent fitness benefits in quorum-sensing bacterial populations [Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci USA. 2012 May 22;109(21):8259–8263.
  • Hawver LA, Jung SA, Ng WL. Specificity and complexity in bacterial quorum-sensing systems [Review Research Support, N.I.H., Extramural]. FEMS Microbiol Rev. 2016 Sep;40(5):738–752.
  • Atkinson S, Williams P. Quorum sensing and social networking in the microbial world [Review]. J R Soc Interface. 2009 Nov 6;6(40):959–978.
  • Brodl E, Winkler A, Macheroux P. Molecular mechanisms of bacterial bioluminescence. Computat Struct Biotechnol J. 2018;16:551–564.
  • Brameyer S, Heermann R, Kreth J. Specificity of signal-binding via non-AHL LuxR-type receptors. PLoS One. 2015;10(4):e0124093.
  • Gerdt JP, Wittenwyler DM, Combs JB, et al. Chemical interrogation of LuxR-type quorum sensing receptors reveals new insights into receptor selectivity and the potential for interspecies bacterial signaling. ACS Chem Biol. 2017;12(9):2457–2464.
  • Faure D, Lang J. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front Plant Sci. 2014;5:14.
  • Watve S, Barrasso K, Jung SA, et al. Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLoS Pathog. 2020;16(2):e1008313.
  • Kelly RC, Bolitho ME, Higgins DA, et al. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat Chem Biol. 2009;5(12):891–895.
  • Mashruwala AA, Bassler BL. The Vibrio cholerae quorum-sensing protein VqmA integrates cell density, environmental, and host-derived cues into the control of virulence. mBio. 2020;11(4):e01572–20. DOI:10.1128/mBio.01572-20.
  • Ding F, Oinuma K-I, Smalley NE, et al. The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. MBio. 2018;9(4). DOI:10.1128/mBio.01274-18.
  • Mukherjee S, Moustafa D, Smith CD, et al. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog. 2017 Jul;13(7):e1006504.
  • Lequette Y, Lee J-H, Ledgham F, et al. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol. 2006;188(9):3365–3370.
  • Chun CK, Ozer EA, Welsh MJ, et al. From The Cover: inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Nat Acad Sci. 2004;101(10):3587–3590.
  • Harbarth S, Balkhy HH, Goossens H, et al. Antimicrobial resistance: one world, one fight! Springer; 2015;4:49. DOI:10.1186/s13756-015-0091-2.
  • McMahon DE, Peters GA, Ivers LC, et al. Global resource shortages during COVID-19: bad news for low-income countries. PLoS Negl Trop Dis. 2020;14(7):e0008412.
  • Ranney ML, Griffeth V, Jha AK. Critical supply shortages—the need for ventilators and personal protective equipment during the Covid-19 pandemic. N Engl J Med. 2020;382(18):e41.
  • UNICEF. Pneumonia. A child dies of pneumonia every 39 seconds. 2019 [cited 2020 Mar 3]. Available from: https://data.unicef.org/topic/child-health/pneumonia/
  • Bloom DE, Cadarette D. Infectious disease threats in the twenty-first century: strengthening the global response [review]. Front Immunol. 2019;10:549.
  • van der Meer JW. The infectious disease challenges of our time. Front Public Health. 2013;1:7.
  • Godman B, Haque M, McKimm J, et al. Ongoing strategies to improve the management of upper respiratory tract infections and reduce inappropriate antibiotic use particularly among lower and middle-income countries: findings and implications for the future. Curr Med Res Opin. 2020 Feb;36(2):301–327.
  • Haque M, McKimm J, Godman B, et al. Initiatives to reduce postoperative surgical site infections of the head and neck cancer surgery with a special emphasis on developing countries [Review]. Expert Rev Anticancer Ther. 2019 Jan;19(1):81–92.
  • Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: a rundown of a global crisis [Review]. Infect Drug Resist. 2018;11:1645–1658.
  • Spellberg B, Taylor-Blake B. On the exoneration of Dr. William H. Stewart: debunking an urban legend. Infect Diseases Poverty. 2013;2(1):3.
  • Holmes KK, Bertozzi S, Bloom BR, et al. editors. Major infectious diseases: key messages from disease control priorities. 3rd ed. Washington (DC): The International Bank for Reconstruction and Development /The World Bank; 2017 Nov 3 [cited 2020 Feb 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525197/.
  • Tulsiani S, Graham GC, Moore P, et al. Emerging tropical diseases in Australia. Part 5. Hendra virus. Ann Tropic Med Parasitol. 2011;105(1):1–11.
  • Field H, Crameri G, Kung NY-H, et al. Ecological aspects of Hendra virus. Henipavirus: Springer; 2012. p. 11–23.
  • Middleton D. Hendra virus. Veterinary Clinics of North America: Equine Practice. 2014;30(3):579–589.
  • Quammen D. Spillover: animal infections and the next human pandemic. 1st ed. New York, NY: WW Norton & Company; 2012.
  • Guillard T, Pons S, Roux D, et al. Antibiotic resistance and virulence: understanding the link and its consequences for prophylaxis and therapy [Review]. Bioessays. 2016 Jul;38(7):682–693.
  • Martinez JL. Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens [research Support, Non-U.S. Gov’t]. Microbiol Spectr. 2018 Jan;6(1). DOI:10.1128/microbiolspec.MTBP-0006-2016. PMID:29350130.
  • Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet. 2016 Jan 9;387(10014):168–175.
  • Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10(12):e0143304.
  • O’Neill J. Review on antimicrobial resistance. Tackl Drug-resist Infect Global. 2016 May [cited 2020 Mar 3];2016. Available from: https://www.biomerieuxconnection.com/wp-content/uploads/2018/04/Tackling-Drug-Resistant-Infections-Globally_-Final-Report-and-Recommendations.pdf.
  • Howell L. World economic forum. Global risks 2013, eighth edition: an initiative of the risk response network. 2013 [cited 2020 Feb 10]. Available from: http://www3.weforum.org/docs/WEF_GlobalRisks_Report_2013.pdf.
  • Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66.
  • Duong A. 6 Factors That Have Caused Antibiotic Resistance. 2015 [cited 2020 Mar 3]. Available from: https://infectioncontrol.tips/2015/11/18/6-factors-that-have-caused-antibiotic-resistance/.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon [Review]. Pathog Glob Health. 2015;109(7):309–318.
  • Nakamizo S, Egawa G, Honda T, et al. Commensal bacteria and cutaneous immunity [Review]. Semin Immunopathol. 2015 Jan;37(1):73–80.
  • Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018 Nov;3(11):1255–1265.
  • Sun L, Zhang X, Zhang Y, et al. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front Cell Infect Microbiol. 2019;9:99.
  • Pascal M, Perez-Gordo M, Caballero T, et al. Microbiome and allergic diseases. Front Immunol. 2018;9:1584.
  • Tai N, Wong FS, Wen L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev Endocr Metab Disord. 2015;16(1):55–65.
  • Sekirov I, Russell SL, Antunes LCM, et al. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.
  • Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.
  • Harris LA, Baffy N. Modulation of the gut microbiota: a focus on treatments for irritable bowel syndrome. Postgrad Med. 2017;129(8):872–888.
  • Cryan JF, O’Riordan KJ, Cowan CS, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013.
  • Chunxi L, Haiyue L, Yanxia L, et al. The gut microbiota and respiratory diseases: new evidence. J Immunol Res. 2020;2020:2340670. DOI:10.1155/2020/2340670.
  • Chen -Y-Y, Chen D-Q, Chen L, et al. Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease. J Transl Med. 2019;17(1):1–11.
  • Neiditch MB, Capodagli GC, Prehna G, et al. Genetic and structural analyses of rrnpp intercellular peptide signaling of gram-positive bacteria [Review Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Ann Rev Genet. 2017 Nov 27;51:311–333.
  • Jiang Q, Chen J, Yang C, et al. Quorum sensing: a prospective therapeutic target for bacterial diseases [Review]. Biomed Res Int. 2019;2019:2015978.
  • Zhao X, Yu Z, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 2020;8(3):425.
  • Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction [Review Research Support, N.I.H., Extramural]. J Mol Biol. 2016 Sep 25;428(19):3752–3775.
  • Skandamis PN, Nychas GJ. Quorum sensing in the context of food microbiology [Research Support, Non-U.S. Gov’t Review]. Appl Environ Microbiol. 2012 Aug;78(16):5473–5482.
  • Zhou J, Lyu Y, Richlen M, et al. Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit Rev Plant Sci. 2016;35(2):81–105.
  • Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria [Review]. Nat Rev Microbiol. 2016 Aug 11;14(9):576–588.
  • Holm A, Vikstrom E. Quorum sensing communication between bacteria and human cells: signals, targets, and functions [Review]. Front Plant Sci. 2014;5:309.
  • Cornforth DM, Popat R, McNally L, et al. Combinatorial quorum sensing allows bacteria to resolve their social and physical environment [Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci USA. 2014 Mar 18;111(11):4280–4284.
  • Bhate MP, Molnar KS, Goulian M, et al. Signal transduction in histidine kinases: insights from new structures [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Structure. 2015 Jun 2;23(6):981–994.
  • Hauser AR. Pseudomonas aeruginosa: so many virulence factors, so little time [Editorial Research Support, N.I.H., Extramural Comment]. Crit Care Med. 2011 Sep;39(9):2193–2194.
  • Le Berre R, Nguyen S, Nowak E, et al. Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia. Crit Care Med. 2011 Sep;39(9):2113–2120.
  • Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa [Research Support, Non-U.S. Gov’t Review]. Protein Cell. 2015 Jan;6(1):26–41.
  • Pietrocola G, Nobile G, Rindi S, et al. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases [Review]. Front Cell Infect Microbiol. 2017;7:166.
  • Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection [Research Support, N.I.H., Extramural Review]. Semin Immunopathol. 2012 Mar;34(2):281–297.
  • Subramani R. JM. Bacterial quorum sensing: biofilm formation, survival behaviour, and antibiotic resistance. In: Bramhachari P, editor. Implication of quorum sensing and biofilm formation in medicine, agriculture, and food industry. Singapore: Springer; 2019. p. 21–37. DOI:10.1007/978-981-32-9409-7_3.
  • Kalia VC. Biotechnological applications of quorum sensing inhibitors. Singapore: Springer Nature Pte Ltd; 2018 [2020 Mar 10]. Available from: https://link.springer.com/content/pdf/bfm%3A978-981-10-9026-4%2F1.pdf.
  • Guan Y, Tsao CY, Quan DN, et al. Focusing quorum sensing signalling by nano-magnetic assembly [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Environ Microbiol. 2018 Jul;20(7):2585–2597.
  • Li Y, Rebuffat S. The manifold roles of microbial ribosomal peptide-based natural products in physiology and ecology [Review]. J Biol Chem. 2020 Jan 3;295(1):34–54.
  • Castillo-Juarez I, Maeda T, Mandujano-Tinoco EA, et al. Role of quorum sensing in bacterial infections [Review]. World J Clin Cases. 2015 Jul 16;3(7):575–598.
  • Magana M, Sereti C, Ioannidis A, et al. Options and limitations in clinical investigation of bacterial biofilms [Research Support, Non-U.S. Gov’t Review]. Clin Microbiol Rev. 2018 Jul;31(3):e00084–16. DOI:10.1128/CMR.00084-16.
  • Cakar A. [Bacterial communication: quorum-sensing] [Review]. Mikrobiyol Bul. 2004 Jul;38(3):273–284.
  • Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol. 2015;5:30048.
  • Karslake J, Maltas J, Brumm P, et al. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLOS Comput Biol. 2016 Oct;12(10):e1005098.
  • Garchitorena A, Sokolow SH, Roche B, et al. Disease ecology, health and the environment: a framework to account for ecological and socio-economic drivers in the control of neglected tropical diseases. Philos Trans R Soc Lond B Biol Sci. 2017 Jun 5;372:1722.
  • Diard M, Hardt WD. Evolution of bacterial virulence [Review Research Support, Non-U.S. Gov’t]. FEMS Microbiol Rev. 2017 Sep 1;41(5):679–697.
  • Winzer K, Williams P. Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol. 2001;291(2):131–143.
  • Braga RM, Dourado MN, Araujo WL. Microbial interactions: ecology in a molecular perspective [Review]. Braz J Microbiol. 2016 Dec;47(Suppl 1):86–98.
  • Koo H, Allan RN, Howlin RP, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Rev Microbiol. 2017;15(12):740.
  • Castillo-Juarez I, Lopez-Jacome LE, Soberón-Chávez G, et al. Exploiting quorum sensing inhibition for the control of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms. Curr Top Med Chem. 2017;17(17):1915–1927.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Nature. 2017 Nov 15;551(7680):313–320.
  • Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy [Review]. Trends Microbiol. 2018 Apr;26(4):313–328.
  • Mion S, Remy B, Plener L, et al. [Quorum sensing and quorum quenching: how to disrupt bacterial communication to inhibit virulence?] [Review]. Med Sci (Paris). 2019 Jan;35(1):31–38.
  • Kalia VC. Quorum sensing inhibitors: an overview [Research Support, Non-U.S. Gov’t Review]. Biotechnol Adv. 2013 Mar-Apr;31(2):224–245.
  • Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci. 2014;10(5):550.
  • Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets [Review]. Crit Rev Microbiol. 2011 May;37(2):121–140.
  • Zhang W, Li C. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications [Review]. Front Microbiol. 2015;6:1535.
  • Hemmati F, Salehi R, Ghotaslou R, et al. Quorum quenching: a potential target for antipseudomonal therapy. Infect Drug Resist. 2020;13:2989.
  • Gupta K, Daroch P, Harjai K, et al. Parallels among natural and synthetically modified quorum-quenching strategies as convoy to future therapy [Review]. Microbiology. 2019 Dec;165(12):1265–1281.
  • Dembitsky VM, Al Quntar AA, Srebnik M. Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing [Review]. Chem Rev. 2011 Jan 12;111(1):209–237.
  • Rampacci E, Marenzoni ML, Giovagnoli S, et al. Phenotypic characterization of rhodococcus equi biofilm grown in vitro and inhibiting and dissolving activity of azithromycin/rifampicin treatment. Pathogens. 2019 Dec 4;8(4):284.
  • Khatoon Z, McTiernan CD, Suuronen EJ, et al. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention [Review]. Heliyon. 2018 Dec;4(12):e01067.
  • Domenech M, Ramos-Sevillano E, Garcia E, et al. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae [Research Support, Non-U.S. Gov’t]. Infect Immun. 2013 Jul;81(7):2606–2615.
  • Gonzalez JF, Hahn MM, Gunn JS. Chronic biofilm-based infections: skewing of the immune response [Research Support, N.I.H., Extramural Review]. Pathog Dis. 2018 Apr 1;76(3):fty023. DOI:10.1093/femspd/fty023.
  • Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from pseudomonas aeruginosa and other bacteria [Research Support, Non-U.S. Gov’t Review]. J Biol Chem. 2016 Jun 10;291(24):12547–12555.
  • Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing [Research Support, Non-U.S. Gov’t Review]. Curr Opin Microbiol. 2014 Apr;18:96–104.
  • Ng WL, Perez L, Cong J, et al. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. PLoS Pathog. 2012;8(6):e1002767.
  • Liu Z, Miyashiro T, Tsou A, et al. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proc Natl Acad Sci USA. 2008 Jul 15;105(28):9769–9774.
  • Zhu J, Mekalanos JJ. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Dev Cell. 2003 Oct;5(4):647–656.
  • Zhu J, Miller MB, Vance RE, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Proc Natl Acad Sci USA. 2002 Mar 5;99(5):3129–3134.
  • Nadell CD, Xavier JB, Levin SA, et al. The evolution of quorum sensing in bacterial biofilms [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. PLoS Biol. 2008 Jan;6(1):e14.
  • Thoendel M, Kavanaugh JS, Flack CE, et al. Peptide signaling in the staphylococci [Research Support, N.I.H., Extramural Review]. Chem Rev. 2011 Jan 12;111(1):117–151.
  • Thomson NR, Crow MA, McGowan SJ, et al. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control [Research Support, Non-U.S. Gov’t]. Mol Microbiol. 2000 May;36(3):539–556.
  • Weeks JN, Galindo CL, Drake KL, et al. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. BMC Microbiol. 2010 Jun 8;10:167.
  • Miki T. [Virulence determinant of Chromobacterium violaceum] [Review]. Nihon Saikingaku Zasshi. 2014;69(4):577–588.
  • Banerjee G, Ray AK. The talking language in some major Gram-negative bacteria [Review]. Arch Microbiol. 2016 Aug;198(6):489–499.
  • Tang K, Zhang XH. Quorum quenching agents: resources for antivirulence therapy [Research Support, Non-U.S. Gov’t Review]. Mar Drugs. 2014 May 30;12(6):3245–3282.
  • Fleitas Martinez O, Rigueiras PO, Pires ADS, et al. Interference With Quorum-Sensing Signal Biosynthesis as a Promising Therapeutic Strategy Against Multidrug-Resistant Pathogens [Research Support, Non-U.S. Gov’t Review]. Front Cell Infect Microbiol. 2018;8:444.
  • Fong J, Mortensen KT, Norskov A, et al. Itaconimides as Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa [Research Support, Non-U.S. Gov’t]. Front Cell Infect Microbiol. 2018;8:443.
  • Fleitas Martinez O, Cardoso MH, Ribeiro SM, et al. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition [Research Support, Non-U.S. Gov’t Review]. Front Cell Infect Microbiol. 2019;9:74.
  • Kaufmann GF, Park J, Mayorov AV, et al. Generation of quorum quenching antibodies [Research Support, N.I.H., Extramural]. Methods Mol Biol. 2011;692:299–311.
  • Kaufmann GF, Park J, Janda KD. Bacterial quorum sensing: a new target for anti-infective immunotherapy [Research Support, Non-U.S. Gov’t]. Expert Opin Biol Ther. 2008 Jun;8(6):719–724.
  • Morohoshi T, Tokita K, Ito S, et al. Inhibition of quorum sensing in gram-negative bacteria by alkylamine-modified cyclodextrins. J Biosci Bioeng. 2013 Aug;116(2):175–179.
  • Kusada H, Tamaki H, Kamagata Y, et al. A novel quorum-quenching n-acylhomoserine lactone acylase from acidovorax sp. strain MR-S7 mediates antibiotic resistance [Research Support, Non-U.S. Gov’t]. Appl Environ Microbiol. 2017 Jul 1;83(13). DOI:10.1128/AEM.00080-17.
  • Kusada H, Zhang Y, Tamaki H, et al. Novel N-acyl homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities. Front Microbiol. 2019;10:455.
  • Liu HB, Lee JH, Kim JS, et al. Inhibitors of the Pseudomonas aeruginosa quorum-sensing regulator, QscR [Research Support, Non-U.S. Gov’t]. Biotechnol Bioeng. 2010 May 1;106(1):119–126.
  • Steenackers HP, Levin J, Janssens JC, et al. Structure-activity relationship of brominated 3-alkyl-5-methylene-2(5H)-furanones and alkylmaleic anhydrides as inhibitors of Salmonella biofilm formation and quorum sensing regulated bioluminescence in Vibrio harveyi [Research Support, Non-U.S. Gov’t]. Bioorg Med Chem. 2010 Jul 15;18(14):5224–5233.
  • Galkin M, Ivanitsia V, Ishkov Y, et al. Characteristics of the pseudomonas aeruginosa PA01 intercellular signaling pathway (quorum sensing) functioning in presence of porphyrins bismuth complexes [Research Support, Non-U.S. Gov’t]. Pol J Microbiol. 2015;64(2):101–106.
  • Brango-Vanegas J, Costa GM, Ortmann CF, et al. Glycosylflavonoids from cecropia pachystachya trecul are quorum sensing inhibitors [Research Support, Non-U.S. Gov’t]. Phytomedicine. 2014 Apr 15;21(5):670–675.
  • Patil A, Joshi-Navre K, Mukherji R, et al. Biosynthesis of glycomonoterpenes to attenuate quorum sensing associated virulence in bacteria. Appl Biochem Biotechnol. 2017 Apr;181(4):1533–1548.
  • Vega LMMJ, Yang Y, Pyle BH, et al. Nickel and cadmium ions inhibit quorum sensing and biofilm formation without affecting viability in Burkholderia multivorans. Int Biodeter Biodegr. 2014;91:82–87.
  • Miller KP, Wang L, Chen YP, et al. Engineering nanoparticles to silence bacterial communication. Front Microbiol. 2015;6:189.
  • al H. Nanomaterials as a novel class of anti-infective agents that attenuate bacterial quorum sensing. In: Ahmad I, Ahmad S, Rumbaugh K, editors. Antibacterial drug discovery to combat MDR. Singapore: Springer; 2019. p. 581–604. DOI:10.1007/978-981-13-9871-1_26.
  • Qais FAKM, Ahmad I. Nanoparticles as quorum sensing inhibitor: prospects and limitations. In: Kalia V, editor. Biotechnological applications of quorum sensing inhibitors. Singapore: Springer; 2018. p. 561–579. DOI:10.1007/978-981-13-9871-1_25.
  • Manefield M, Rasmussen TB, Henzter M, et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover [Research Support, Non-U.S. Gov’t]. Microbiology. 2002 Apr;148(Pt 4):1119–1127.
  • Defoirdt T, Miyamoto CM, Wood TK, et al. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Environ Microbiol. 2007 Oct;9(10):2486–2495.
  • Kuehl R, Al-Bataineh S, Gordon O, et al. Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by luxS repression [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2009 Oct;53(10):4159–4166.
  • Zhu P, Peng H, Ni N, et al. Novel AI-2 quorum sensing inhibitors in Vibrio harveyi identified through structure-based virtual screening [Research Support, Non-U.S. Gov’t]. Bioorg Med Chem Lett. 2012 Oct 15;22(20):6413–6417.
  • Brackman G, Al Quntar AA, Enk CD, et al. Synthesis and evaluation of thiazolidinedione and dioxazaborocane analogues as inhibitors of AI-2 quorum sensing in Vibrio harveyi [Research Support, Non-U.S. Gov’t]. Bioorg Med Chem. 2013 Feb 1;21(3):660–667.
  • Rajamanikandan S, Jeyakanthan J, Srinivasan P. Binding mode exploration of LuxR-thiazolidinedione analogues, e-pharmacophore-based virtual screening in the designing of LuxR inhibitors and its biological evaluation [Evaluation Study]. J Biomol Struct Dyn. 2017 Mar;35(4):897–916.
  • Erickson DL, Endersby R, Kirkham A, et al. Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis [Research Support, Non-U.S. Gov’t]. Infect Immun. 2002 Apr;70(4):1783–1790.
  • Sahner JH, Empting M, Kamal A, et al. Exploring the chemical space of ureidothiophene-2-carboxylic acids as inhibitors of the quorum sensing enzyme PqsD from Pseudomonas aeruginosa [Research Support, Non-U.S. Gov’t]. Eur J Med Chem. 2015;96:14–21.
  • Paluch E, Rewak-Soroczynska J, Jedrusik I, et al. Prevention of biofilm formation by quorum quenching [Review]. Appl Microbiol Biotechnol. 2020 Mar;104(5):1871–1881.
  • Chen J, Wang B, Lu Y, et al. Quorum sensing inhibitors from marine microorganisms and their synthetic derivatives [Review]. Mar Drugs. 2019 Jan 28;17:2.
  • Zhao J, Li X, Hou X, et al. Widespread existence of quorum sensing inhibitors in marine bacteria: potential drugs to combat pathogens with novel strategies [Review]. Mar Drugs. 2019 May 8;17(5):275.
  • Ahmed S, Rudden M, Smyth TJ, et al. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol. 2019 Apr;103(8):3521–3535.
  • Krzyzek P. Challenges and limitations of anti-quorum sensing therapies. Front Microbiol. 2019;10:2473.
  • Torres M, Dessaux Y, Llamas I. Saline environments as a source of potential quorum sensing disruptors to control bacterial infections: a review [Review]. Mar Drugs. 2019 Mar 25;17(3):191.
  • Maeda T, García-Contreras R, Pu M, et al. Quorum quenching quandary: resistance to antivirulence compounds. Isme J. 2012;6(3):493–501.
  • Kalia VC, Wood TK, Kumar P. Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. 2014;68(1):13–23.
  • García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, et al. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathogen Disease. 2015;73(6):ftv040.
  • García-Contreras R, Nunez-Lopez L, Jasso-Chávez R, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. Isme J. 2015;9(1):115–125.
  • Li B, Webster TJ. Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Orthop Res. 2018 Jan;36(1):22–32.
  • Gebreyohannes G, Nyerere A, Bii C, et al. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms [Review]. Heliyon. 2019 Aug;5(8):e02192.
  • Xie R, Zhang XD, Zhao Q, et al. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg Microbes Infect. 2018 Mar 14;7(1):31.
  • Wang X, Wang Y, Zhou Y, et al. Emergence of colistin resistance gene mcr-8 and its variant in raoultella ornithinolytica. Front Microbiol. 2019;10:228.
  • Hauser AR, Mecsas J, Moir DT. Beyond antibiotics: new therapeutic approaches for bacterial infections [Research Support, N.I.H., Extramural]. Clin Infect Dis. 2016 Jul 1;63(1):89–95.
  • Quorum VCK. Sensing and its biotechnological applications. Springer Nature Singapore Pte Ltd.; 2018. p. 3-16. DOI:10.1007/978-981-13-0848-2_1.
  • Han M, Gu J, Gao GF, et al. China in action: national strategies to combat against emerging infectious diseases. Sci China Life Sci. 2017 Dec;60(12):1383–1385.
  • Liu J, Yu H, Huang Y, et al. Complete genome sequence of a novel bacteriophage infecting Bradyrhizobium diazoefficiens USDA110 [Letter]. Sci China Life Sci. 2018 Jan;61(1):118–121.
  • Bahari S, Zeighami H, Mirshahabi H, et al. Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin [Research Support, Non-U.S. Gov’t]. J Glob Antimicrob Resist. 2017 Sep;10:21–28.
  • Furiga A, Lajoie B, El Hage S, et al. Impairment of pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2015 Dec 28;60(3):1676–1686.
  • Kim C, Hesek D, Lee M, et al. Potentiation of the activity of beta-lactam antibiotics by farnesol and its derivatives [Research Support, N.I.H., Extramural]. Bioorg Med Chem Lett. 2018 Feb 15;28(4):642–645.
  • Christensen LD, van Gennip M, Jakobsen TH, et al. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model [Research Support, Non-U.S. Gov’t]. J Antimicrob Chemother. 2012 May;67(5):1198–1206.
  • Fong J, Yuan M, Jakobsen TH, et al. Disulfide bond-containing ajoene analogues as novel quorum sensing inhibitors of pseudomonas aeruginosa [Research Support, Non-U.S. Gov’t]. J Med Chem. 2017 Jan 12;60(1):215–227.
  • Vadekeetil A, Saini H, Chhibber S, et al. Exploiting the antivirulence efficacy of an ajoene-ciprofloxacin combination against Pseudomonas aeruginosa biofilm associated murine acute pyelonephritis [Research Support, Non-U.S. Gov’t]. Biofouling. 2016;32(4):371–382.
  • Roudashti S, Zeighami H, Mirshahabi H, et al. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol. 2017 Mar;33(3):50.
  • Chu C, Deng J, Man Y, et al. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments [Review]. Biomed Res Int. 2017;2017:5615647.
  • Shchepin R, Dumitru R, Nickerson KW, et al. Biologically active fluorescent farnesol analogs [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Chem Biol. 2005 Jun;12(6):639–641.
  • Kuroda M, Nagasaki S, Ito R, et al. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. FEMS Microbiol Lett. 2007 Aug;273(1):28–34.
  • Brackman G, Breyne K, De Rycke R, et al. The Quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release [Research Support, Non-U.S. Gov’t]. Sci Rep. 2016 Feb 1;6:20321. DOI:10.1038/srep20321.
  • Sharma AK, Dhasmana N, Dubey N, et al. Bacterial virulence factors: secreted for survival [Review]. Indian J Microbiol. 2017 Mar;57(1):1–10.
  • HA. C. The principles and practice of medicine. New York: D Appleton-Century Company Inc; 1944.
  • Von Behring E, Kitasato S. Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren [The mechanism of diphtheria immunity and tetanus immunity in animals. 1890]. Mol Immunol. 1991;28(12):1317,1319–1320.
  • Casadevall A. Antibody-based therapies for emerging infectious diseases [Research Support, U.S. Gov’t, P.H.S. Review]. Emerg Infect Dis. 1996 Jul-Sep;2(3):200–208.
  • Hardie KR, Cooksley C, Green AD, et al. Autoinducer 2 activity in Escherichia coli culture supernatants can be actively reduced despite maintenance of an active synthase, LuxS [Research Support, Non-U.S. Gov’t]. Microbiology. 2003 Mar;149(Pt 3):715–728.
  • Lubran MM. Bacterial toxins [Review]. Ann Clin Lab Sci. 1988 Jan-Feb;18(1):58–71.
  • Lahiri SS. Bacterial toxins–an overview [Review]. J Nat Toxins. 2000 Nov;9(4):381–408.
  • Powers ME, Becker RE, Sailer A, et al. Synergistic action of staphylococcus aureus alpha-toxin on platelets and myeloid lineage cells contributes to lethal sepsis [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell Host Microbe. 2015 Jun 10;17(6):775–787.
  • Heinbockel L, Weindl G, Martinez-de-Tejada G, et al. Inhibition of lipopolysaccharide- and lipoprotein-induced inflammation by antitoxin peptide pep19-2.5 [Research Support, Non-U.S. Gov’t Review]. Front Immunol. 2018;9:1704.
  • Lahiani A, Yavin E, Lazarovici P. The Molecular Basis of Toxins’ Interactions with Intracellular Signaling via Discrete Portals [Review Research Support, Non-U.S. Gov’t]. Toxins (Basel). 2017 Mar 16;9:3.
  • Wei X, Gao J, Wang F, et al. In situ capture of bacterial toxins for antivirulence vaccination. Adv Mater. 2017;29:33.
  • Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome J. 2019;11: 100052. https://doi.org/10.1016/j.humic.2019.01.001.
  • Ortines RV, Liu H, Cheng LI, et al. Neutralizing alpha-toxin accelerates healing of staphylococcus aureus-infected wounds in nondiabetic and diabetic mice [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2018 Mar;62:3.
  • Muhlen S, Dersch P. Anti-virulence strategies to target bacterial infections [Research Support, Non-U.S. Gov’t Review]. Curr Top Microbiol Immunol. 2016;398:147–183.
  • Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance [Review]. Nat Rev Drug Discov. 2017 Jul;16(7):457–471.
  • Ahmad Khan MS, Alshehrei F, Al-Ghamdi SB, et al. Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis [Review]. Future Sci OA. 2020 Feb 3;6(2):FSO440.
  • Liu L, Shen X, Yu J, et al. Subinhibitory concentrations of fusidic acid may reduce the virulence of s. aureus by down-regulating sara and saers to reduce biofilm formation and alpha-toxin expression. Front Microbiol. 2020;11:25.
  • Manges AR, Labbe A, Loo VG, et al. Comparative metagenomic study of alterations to the intestinal microbiota and risk of nosocomial Clostridum difficile-associated disease. J Infect Dis. 2010;202(12):1877–1884.
  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21;444(7122):1027–1031.
  • Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262–266.
  • Craven M, Egan CE, Dowd SE, et al. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s disease. PloS One. 2012;7(7):e41594.
  • Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013 Dec 19;155(7):1451–1463.
  • Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017 Oct 10;8(1):845.
  • Scott TA, Quintaneiro LM, Norvaisas P, et al. Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans. Cell. 2017 Apr 20;169(3):442–456 e18.
  • Li Q, Ren Y, Fu X. Inter-kingdom signaling between gut microbiota and their host. Cell Mol Life Sci. 2019 Jun;76(12):2383–2389.
  • Yadav MK, Vidal JE, Go YY, et al. The LuxS/AI-2 Quorum-Sensing System of Streptococcus pneumoniae Is Required to Cause Disease, and to Regulate Virulence- and Metabolism-Related Genes in a Rat Model of Middle Ear Infection. Front Cell Infect Microbiol. 2018;8:138.
  • Ha JH, Hauk P, Cho K, et al. Evidence of link between quorum sensing and sugar metabolism in Escherichia coli revealed via cocrystal structures of LsrK and HPr. Sci Adv. 2018 Jun;4(6):eaar7063.
  • Mitra A, Herren CD, Patel IR, et al. Integration of AI-2 based cell-cell signaling with metabolic cues in escherichia coli. PloS One. 2016;11(6):e0157532.
  • Sun Z, He X, Brancaccio VF, et al. Bifidobacteria exhibit LuxS-dependent autoinducer 2 activity and biofilm formation. PloS One. 2014;9(2):e88260.
  • Liu L, Wu R, Zhang J, et al. Overexpression of luxS promotes stress resistance and biofilm formation of lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes. Front Microbiol. 2018;9:2628.
  • Lukas F, Gorenc G, Kopecny J. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol (Praha). 2008;53(3):221–224.
  • Hsiao A, Ahmed AM, Subramanian S, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014 Nov 20;515(7527):423–426.
  • Christiaen SE, O’Connell Motherway M, Bottacini F, et al. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PloS One. 2014;9(5):e98111.
  • Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo [Research Support, Non-U.S. Gov’t]. Antimicrob Agents Chemother. 2011 Jun;55(6):2655–2661.
  • Pena RT, Blasco L, Ambroa A, et al. Relationship between quorum sensing and secretion systems. Front Microbiol. 2019;10:1100.
  • Toyofuku M. Bacterial communication through membrane vesicles. Biosci Biotechnol Biochem. 2019;83(9):1599–1605.
  • Lee J, Kim OY, Gho YS. Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: current perspectives. PROTEOMICS–Clinical Appl. 2016;10(9–10):897–909.
  • Pasqua M, Visaggio D, Sciuto AL, et al. Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa. J Bacteriol. 2017;199(22). DOI:10.1128/JB.00472-17.
  • Kareb O, Aïder M. Quorum sensing circuits in the communicating mechanisms of bacteria and its implication in the biosynthesis of bacteriocins by lactic acid bacteria: a review. Probiot Antimicrobial Proteins. 2020;12(1):5–17. DOI:10.1007/s12602-019-09555-4. PMID:31104210.
  • Shanker E, Federle MJ. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). 2017;8(1):15.
  • Blokesch M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob Genet Elements. 2012;2(5):224–227.
  • Jabbari S, Heap JT, King JR. Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA. Bull Math Biol. 2011;73(1):181–211.
  • Bramhachari PV, Yugandhar N, Prathyusha A, et al. Quorum sensing regulated swarming motility and migratory behavior in Bacteria. In: Implication of Quorum Sensing System in Biofilm Formation and Virulence. Singapore: Springer; 2018. p. 49–66.
  • Abdula N, Macharia J, Motsoaledi A, et al. National action for global gains in antimicrobial resistance. Lancet. 2016;387(10014):e3–e5.
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327.
  • Chandler CI. Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun. 2019;5(1):1–13.
  • El-Sayed Ahmed MAE-G, Zhong -L-L, Shen C, et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9(1):868–885.
  • Manyi-Loh C, Mamphweli S, Meyer E, et al. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. 2018;23(4):795.
  • Galbraith H, Iwanowicz D, Spooner D, et al. Exposure to synthetic hydraulic fracturing waste influences the mucosal bacterial community structure of the brook trout (Salvelinus fontinalis) epidermis. AIMS Microbiol. 2018;4(3):413.
  • Rehman ZU, Leiknes T. Quorum-quenching bacteria isolated from Red Sea sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol. 2018;9:1354.
  • Wang Y, Liu B, Grenier D, et al. Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance. Antimicrob Agents Chemother. 2019;63(10):e01186–19.
  • Paczkowski JE, Mukherjee S, McCready AR, et al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 2017;292(10):4064–4076.
  • Hnamte S, Parasuraman P, Ranganathan S, et al. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: in vitro, in vivo and in silico approach. Micr Patho. 2019;131:128–134.
  • Vasavi H, Arun A, Rekha P. Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect. 2016;49(1):8–15.
  • O’Loughlin CT, Miller LC, Siryaporn A, et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Nat Acad Sci. 2013;110(44):17981–17986.
  • Suneby EG, Herndon LR, Schneider TL. Pseudomonas aeruginosa LasR· DNA binding is directly inhibited by quorum sensing antagonists. ACS Infect Dis. 2017;3(3):183–189.
  • Capilato JN, Philippi SV, Reardon T, et al. Development of a novel series of non-natural triaryl agonists and antagonists of the Pseudomonas aeruginosa LasR quorum sensing receptor. Bioorg Med Chem. 2017;25(1):153–165.
  • Parasuraman P, Devadatha B, Sarma VV, et al. Inhibition of microbial quorum sensing mediated virulence factors by Pestalotiopsis sydowiana. J Microbiol Biotechnol. 2020;30(4):571–582.
  • Ahmed SA, Rudden M, Smyth TJ, et al. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl Microbiol Biotechnol. 2019;103(8):3521–3535.
  • Pattnaik SS, Ranganathan S, Ampasala DR, et al. Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microb Pathog. 2018 May;118:177–189.
  • Parasuraman P, Devadatha B, Sarma VV, et al. Anti-quorum sensing and antibiofilm activities of Blastobotrys parvus PPR3 against Pseudomonas aeruginosa PAO1. Micr Patho. 2020;138:103811.
  • Singh VK, Mishra A, Jha B. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2017;7:337.
  • Whiteley M, Diggle SP, Greenberg EP. Bacterial quorum sensing: the progress and promise of an emerging research area. Nature. 2017;551(7680):313.
  • Scoffone VC, Trespidi G, Chiarelli LR, et al. Quorum sensing as antivirulence target in cystic fibrosis pathogens. Int J Mol Sci. 2019;20(8):1838.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.