217
Views
1
CrossRef citations to date
0
Altmetric
Review

Understanding the genetic basis of immune responses to fungal infection

, &
Pages 987-996 | Received 25 Jan 2022, Accepted 05 Apr 2022, Published online: 13 Apr 2022

References

  • Bongomin F, Gago S, Oladele RO, et al., Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel). 2017;3(4):57.
  • Verweij PE, Rijnders BJA, Bruggemann RJM, et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: an expert opinion. Intensive Care Med. 2020;46(8):1524–1535.
  • Arastehfar A, Carvalho A, van de Veerdonk FL, et al. COVID-19 associated pulmonary aspergillosis (CAPA)-from immunology to treatment. J Fungi (Basel). 2020;6(2):91.
  • Thompson GR 3rd, Le T, Chindamporn A, et al. Global guideline for the diagnosis and management of the endemic mycoses: an initiative of the European confederation of medical mycology in cooperation with the international society for human and animal mycology. Lancet Infect Dis. 2021;21(12):e364–e374.
  • Arastehfar A, Carvalho A, Houbraken J, et al. Aspergillus fumigatus and aspergillosis: from basics to clinics. Stud Mycol. 2021;100:100115.
  • Oliveira LVN, Wang R, Specht CA, et al. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines. 2021;6(1):33.
  • Campos CF, van de Veerdonk FL, Goncalves SM, et al. Host genetic signatures of susceptibility to fungal disease. Curr Top Microbiol Immunol. 2019;422:237–263.
  • Cunha C, Aversa F, Romani L, et al. Human genetic susceptibility to invasive aspergillosis. PLoS Pathog. 2013;9(8):e1003434.
  • Merkhofer RM, Klein BS. Advances in understanding human genetic variations that influence Innate Immunity to fungi. Front Cell Infect Microbiol. 2020;10:69.
  • Lionakis MS, Levitz SM. Host control of fungal infections: lessons from basic studies and human cohorts. Annu Rev Immunol. 2018;36:157–191.
  • Durrant C, Tayem H, Yalcin B, et al. Collaborative cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res. 2011;21(8):1239–1248.
  • Oliveira-Coelho A, Rodrigues F, Campos A Jr., et al. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol. 2015;6:411.
  • Hopke A, Brown AJP, Hall RA, et al. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 2018;26(4):284–295.
  • Hatinguais R, Willment JA, Brown GD. PAMPs of the fungal cell wall and mammalian PRRs. Curr Top Microbiol Immunol. 2020;425:187–223.
  • Delliere S, Sze Wah Wong S, Aimanianda V. Soluble mediators in anti-fungal immunity. Curr Opin Microbiol. 2020;58:24–31.
  • Cunha C, Carvalho A, Esposito A, et al. DAMP signaling in fungal infections and diseases. Front Immunol. 2012;3:286.
  • Scheffold A, Bacher P, LeibundGut-Landmann S. T cell immunity to commensal fungi. Curr Opin Microbiol. 2020;58:116–123.
  • Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol. 2020;58:75–86.
  • Barreiro LB, Quintana-Murci L. Evolutionary and population (epi)genetics of immunity to infection. Hum Genet. 2020;139(6–7):723–732.
  • Bochud PY, Chien JW, Marr KA, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med. 2008;359(17):1766–1777.
  • de Boer MG, Jolink H, Halkes CJ, et al. Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS One. 2011;6(4):e18403.
  • Koldehoff M, Beelen DW, Elmaagacli AH. Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transpl Infect Dis. 2013;15(5):533–539.
  • Carvalho A, Pasqualotto AC, Pitzurra L, et al. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis. 2008;197(4):618–621.
  • Carvalho A, De Luca A, Bozza S, et al. TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood. 2012;119(4):967–977.
  • Plantinga TS, Johnson MD, Scott WK, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis. 2012;205(6):934–943.
  • Johnson CM, Lyle EA, Omueti KO, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol. 2007;178(12):7520–7524.
  • Ferwerda B, Ferwerda G, Plantinga TS, et al., Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 361(18): 1760–1767. 2009.
  • De Luca A, Carvalho A, Cunha C, et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog. 2013;9(7):e1003486.
  • Plantinga TS, van der Velden WJ, Ferwerda B, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49(5):724–732.
  • Rosentul DC, Plantinga TS, Oosting M, et al. Genetic variation in the dectin-1/CARD9 recognition pathway and susceptibility to candidemia. J Infect Dis. 2011;204(7):1138–1145.
  • Plantinga TS, Hamza OJ, Willment JA, et al. Genetic variation of innate immune genes in HIV-infected African patients with or without oropharyngeal candidiasis. J Acquir Immune Defic Syndr. 2010;55(1):87–94.
  • Cunha C, Di Ianni M, Bozza S, et al., Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 116(24): 5394–5402. 2010.
  • Fisher CE, Hohl TM, Fan W, et al., Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation. Blood. 129(19): 2693–2701. 2017.
  • Fischer M, Spies-Weisshart B, Schrenk K, et al. Polymorphisms of Dectin-1 and TLR2 predispose to invasive fungal disease in patients with acute myeloid leukemia. PLoS One. 2016;11(3):e0150632.
  • Sainz J, Lupianez CB, Segura-Catena J, et al. Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary aspergillosis infection. PLoS One. 2012;7(2):e32273.
  • Carvalho A, Giovannini G, De Luca A, et al. Dectin-1 isoforms contribute to distinct Th1/Th17 cell activation in mucosal candidiasis. Cell Mol Immunol. 2012;9(3):276–286.
  • Fischer M, Muller JP, Spies-Weisshart B, et al. Isoform localization of Dectin-1 regulates the signaling quality of anti-fungal immunity. Eur J Immunol. 2017;47(5):848–859.
  • Arts RJ, Novakovic B, Ter Horst R, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 2016;24(6):807–819.
  • Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.
  • Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–1735.
  • Gazendam RP, van Hamme JL, Tool AT, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124(4):590–597.
  • Rieber N, Gazendam RP, Freeman AF, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17):e89890.
  • Xu X, Xu JF, Zheng G, et al. CARD9(S12N) facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nat Immunol. 2018;19(6):547–560.
  • Stappers MHT, Clark AE, Aimanianda V, et al., Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature. 555(7696): 382–386. 2018.
  • Tone K, Stappers MHT, Hatinguais R, et al. MelLec exacerbates the pathogenesis of aspergillus fumigatus-induced allergic inflammation in mice. Front Immunol. 2021;12:675702.
  • Gresnigt MS, Cunha C, Jaeger M, et al., Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat Commun. 9(1): 2636. 2018.
  • Carvalho A, Cunha C, Pasqualotto AC, et al. Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int J Infect Dis. 2010;14(6):e460–8.
  • Ou XT, Wu JQ, Zhu LP, et al. Genotypes coding for mannose-binding lectin deficiency correlated with cryptococcal meningitis in HIV-uninfected Chinese patients. J Infect Dis. 2011;203(11):1686–1691.
  • Lambourne J, Agranoff D, Herbrecht R, et al. Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2009;49(10):1486–1491.
  • Damiens S, Poissy J, Francois N, et al. Mannose-binding lectin levels and variation during invasive candidiasis. J Clinical Immunol. 2012;32(6):1317–1323.
  • Yanagisawa K, Wichukchinda N, Tsuchiya N, et al. Deficiency of mannose-binding lectin is a risk of Pneumocystis jirovecii pneumonia in a natural history cohort of people living with HIV/AIDS in Northern Thailand. PLoS One. 2020;15(12):e0242438.
  • Bernal-Martinez L, Goncalves SM, de Andres B, et al. TREM1 regulates antifungal immune responses in invasive pulmonary aspergillosis. Virulence. 2021;12(1):570–583.
  • Parente R, Possetti V, Erreni M, et al. Complementary roles of short and long pentraxins in the complement-mediated immune response to Aspergillus fumigatus infections. Front Immunol. 2021;12:785883.
  • Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420(6912):182–186.
  • Cunha C, Aversa F, Lacerda JF, et al., Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 370(5): 421–432. 2014.
  • Cunha C, Monteiro AA, Oliveira-Coelho A, et al. PTX3-based genetic testing for risk of aspergillosis after lung transplant. Clin Infect Dis. 2015;61(12):1893–1894.
  • Wojtowicz A, Lecompte TD, Bibert S, et al. PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin Infect Dis. 2015;61(4):619–622.
  • He Q, Li H, Rui Y, et al. Pentraxin 3 Gene polymorphisms and pulmonary aspergillosis in chronic obstructive pulmonary disease patients. Clin Infect Dis. 2018;66(2):261–267.
  • Brunel A-S, Wojtowicz A, Lamoth F, et al. Pentraxin-3 polymorphisms and invasive mold infections in acute leukemia patients receiving intensive chemotherapy. Haematologica. 2018;103(11):e527–e530.
  • Bozza S, Campo S, Arseni B, et al. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol. 2014;193(5):2340–2348.
  • Gonçalves SM, Lagrou K, Rodrigues CS, et al. Evaluation of bronchoalveolar lavage fluid cytokines as biomarkers for invasive pulmonary aspergillosis in at-risk patients. Front Microbiol. 2017;8:2362.
  • Chorny A, Casas-Recasens S, Sintes J, et al. The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells. J Exp Med. 2016;213(10):2167–2185.
  • Carvalho A, Cunha C, Bistoni F, et al. Immunotherapy of aspergillosis. Clin Microbiol Infect. 2012;18(2):120–125.
  • Doni A, Parente R, Laface I, et al., Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nat Commun. 12(1): 3739. 2021.
  • Sainz J, Hassan L, Perez E, et al. Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett. 2007;109(1):76–82.
  • Seo KW, Kim DH, Sohn SK, et al. Protective role of interleukin-10 promoter gene polymorphism in the pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation. Bone Marrow Transplantat. 2005;36(12):1089–1095.
  • Cunha C, Goncalves SM, Duarte-Oliveira C, et al. IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J Allergy Clin Immunol. 2017;140(3):867–870 e9.
  • Potenza L, Vallerini D, Barozzi P, et al. Characterization of specific immune responses to different Aspergillus antigens during the course of invasive aspergillosis in hematologic patients. PLoS One. 2013;8(9):e74326.
  • Wojtowicz A, Gresnigt MS, Lecompte T, et al. IL1B and DEFB1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. J Infect Dis. 2015;211(10):1646–1657.
  • Lupianez CB, Canet LM, Carvalho A, et al. Polymorphisms in host immunity-modulating genes and risk of invasive aspergillosis: results from the AspBIOmics Consortium. Infect Immun. 2015;84(3):643–657.
  • Merkhofer RM Jr., O’Neill MB, Xiong D, et al. Investigation of genetic susceptibility to blastomycosis reveals interleukin-6 as a potential susceptibility locus. mBio. 2019;10(3):e01224–19.
  • Mezger M, Steffens M, Beyer M, et al. Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood. 2008;111(2):534–536.
  • Swamydas M, Gao JL, Break TJ, et al. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med. 2016;8(322):322ra10.
  • Lupianez CB, Martinez-Bueno M, Sanchez-Maldonado JM, et al. Polymorphisms within the ARNT2 and CX3CR1 genes are associated with the risk of developing invasive aspergillosis. Infect Immun. 2020;88(4):e00882–19.
  • Chamilos G, Akoumianaki T, Kyrmizi I, et al. Melanin targets LC3-associated phagocytosis (LAP): a novel pathogenetic mechanism in fungal disease. Autophagy. 2016;12(5):888–889.
  • Akoumianaki T, Kyrmizi I, Valsecchi I, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe. 2016;19(1):79–90.
  • Kyrmizi I, Ferreira H, Carvalho A, et al., Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis. Nat Microbiol. 3(7): 791–803. 2018.
  • Schmidt F, Thywissen A, Goldmann M, et al. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal Infections. Cell Rep. 2020;32(7):108017.
  • Goncalves SM, Duarte-Oliveira C, Campos CF, et al., Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nat Commun. 11(1): 2282. 2020.
  • Tucey TM, Verma J, Harrison PF, et al. Glucose homeostasis is important for immune cell viability during Candida challenge and host survival of systemic fungal infection. Cell Metab. 2018;27(5):988–1006 e7.
  • Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–385.
  • Orabona C, Mondanelli G, Pallotta MT, et al. Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes. JCI Insight. 2018;3(6):e96244.
  • Napolioni V, Pariano M, Borghi M, et al. Genetic polymorphisms affecting IDO1 or IDO2 activity differently associate with aspergillosis in humans. Front Immunol. 2019;10:890.
  • Gonçalves SMF, V A, Cunha C, et al. Targeting immunometabolism in host-directed therapies to fungal disease. Clin Exp Immunol. 2021. DOI:https://doi.org/10.1093/cei/uxab014
  • Shelburne SA, Ajami NJ, Chibucos MC, et al. Implementation of a pan-genomic approach to investigate holobiont-infecting microbe interaction: a case report of a leukemic patient with invasive mucormycosis. PLoS One. 2015;10(11):e0139851.
  • Abdel-Rahman SM, Preuett BL. Genetic predictors of susceptibility to cutaneous fungal infections: a pilot genome wide association study to refine a candidate gene search. J Dermatol Sci. 2012;67(2):147–152.
  • Kumar V, Cheng SC, Johnson MD, et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun. 2014;5:4675.
  • Tian C, Hromatka BS, Kiefer AK, et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun. 2017;8(1):599.
  • Kannambath S, Jarvis JN, Wake RM, et al. Genome-wide association study identifies novel colony stimulating factor 1 locus conferring susceptibility to cryptococcosis in human immunodeficiency virus-infected South Africans. Open Forum Infect Dis. 2020;7(11):ofaa489.
  • Bruno M, Matzaraki V, van de Veerdonk FL, et al. Challenges and opportunities in understanding genetics of fungal diseases: towards a functional genomics approach. Infect Immun. 2021;89(8):e0000521.
  • Bruno M, Dewi IMW, Matzaraki V, et al. Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Comput Struct Biotechnol J. 2021;19:647–663.
  • Fairfax BP, Knight JC. Genetics of gene expression in immunity to infection. Curr Opin Immunol. 2014;30C:63–71.
  • Smeekens SP, Ng A, Kumar V, et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun. 2013;4:1342.
  • Jaeger M, van der Lee R, Cheng SC, et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis. 2015;34(5):963–974.
  • Matzaraki V, Gresnigt MS, Jaeger M, et al. An integrative genomics approach identifies novel pathways that influence candidaemia susceptibility. PLoS One. 2017;12(7):e0180824.
  • Li Y, Oosting M, Deelen P, et al., Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi. Nat Med. 22(8): 952–960. 2016.
  • Jaeger M, Matzaraki V, Aguirre-Gamboa R, et al. A Genome-wide functional genomics approach identifies susceptibility pathways to fungal bloodstream infection in humans. J Infect Dis. 2019;220(5):862–872.
  • Goncalves SM, Antunes D, Leite L, et al. Genetic variation in PFKFB3 impairs antifungal immunometabolic responses and predisposes to invasive pulmonary aspergillosis. mBio. 2021;12(3):e0036921.
  • Matzaraki V, Ktt L, Jaeger M, et al. Inflammatory protein profiles in plasma of candidaemia patients and the contribution of host genetics to their variability. Front Immunol. 2021;12:662171.
  • de Vries DH, Matzaraki V, Bakker OB, et al. Integrating GWAS with bulk and single-cell RNA-sequencing reveals a role for LY86 in the anti-Candida host response. PLoS Pathog. 2020;16(4):e1008408.
  • Jaeger M, Pinelli M, Borghi M, et al. A systems genomics approach identifies SIGLEC15 as a susceptibility factor in recurrent vulvovaginal candidiasis. Sci Transl Med. 2019;11(496):eaar3558.
  • Dewi IMW, Cunha C, Jaeger M, et al. Neuraminidase and SIGLEC15 modulate the host defense against pulmonary aspergillosis. Cell Rep Med. 2021;2(5):100289.
  • Wang L, Pittman KJ, Barker JR, et al. An atlas of genetic variation linking pathogen-induced cellular traits to human disease. Cell Host Microbe. 2018;24(2):308–323 e6.
  • White PL, Parr C, Barnes RA. Predicting invasive aspergillosis in hematology patients by combining clinical and genetic risk factors with early diagnostic biomarkers. J Clin Microbiol. 2018;56(1):e01122–17.
  • Williams TJ, Harvey S, Armstrong-James D. Immunotherapeutic approaches for fungal infections. Curr Opin Microbiol. 2020;58:130–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.