1,101
Views
7
CrossRef citations to date
0
Altmetric
Review

Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1095-1108 | Received 14 Jan 2022, Accepted 12 May 2022, Published online: 31 May 2022

References

  • León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, et al. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol. 2020;11:1669.
  • Kim SM, Escorbar I, Lee K, et al. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J Microbiol. 2020;58(6):431–444
  • Memar MY, Yekani M, Celenza G, et al. The central role of the SOS DNA repair system in antibiotics resistance: a new target for a new infectious treatment strategy. Life Sci. 2020;262:118562.
  • Shang Z, Chan SY, Song Q, et al. The strategies of pathogen-oriented therapy on circumventing antimicrobial resistance. Research (Wash DC). 2020;28. 2016201.
  • PhRMA. Fact Sheet on Challenges with AMR. 2021 [cited 2021 Oct 20]. Available from: https://phrma.org/-/media/Project/PhRMA/PhRMA-Org/PhRMA-Org/PDF/A-C/AMR-Ecosystem-Challenges-Backgrounder_PhRMA.pdf
  • WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017 [cited 2021 Oct 6]. Available from: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  • WHO. WHO publishes the list of bacteria for which new antibiotics are urgently needed. 2017 [cited 2021 Oct 3]. Available from: https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
  • Tiwari V. Post-translational modification of ESKAPE pathogens as a potential target in drug discovery. Drug Discov Today. 2019;24(3):814–822.
  • Gallagher P, Baker S. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii: Acinetobacter baumannii therapeutics. J Infect. 2020;81(6):857–861.
  • ECDC. Antimicrobial resistance in Europe 2014. Annual report of the European antimicrobial resistance surveillance network (EARS-Net). 2015 [cited 2021 Oct 7]. Available in: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/an-timicrobial-resistance-europe-2014.pdf
  • Fariñas MC, Martínez-Martínez L. Infections caused by multi-resistant gram-negative bacteria Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacteria, Pseudomonas aeruginosa, Acinetobacter baumannii and other non-fermenting gram-negative bacilli. Enferm Infecc Microbiol Clin. 2013;31(6):402–409.
  • Murugan N, Malath J, Therese KL, et al. Application of six multiplex PCR’s among 200 clinical isolates of Pseudomonas aeruginosa for the detection of 20 drug resistance encoding genes. Kaohsiung J Med Sci. 2018;34(2):79–88
  • Dolan SK. Current knowledge and future directions in developing strategies to combat Pseudomonas aeruginosa infection. J Mol Biol. 2020;432(20):5509–5528.
  • Vila J, Marco F. Interpretive reading of the non-fermenting gram-negative bacilli antibiogram. Enferm Infecc Microbiol Clin. 2010;28(10):726–36. 43.
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant pseudomonas aeruginosa : clinical impact and complex regulation of Chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610
  • Karaman R, Jubeh B, Breijyeh Z. Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules. 2020;25(12):2888.
  • Tong SY, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbial. Rev. 2015;28(3):603–661
  • Troeman DPR, Van Hout D, Kluytmans JAJW. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: a review. J Antimicrob Chemother. 2019;74(2):281–294.
  • Foster T. Antibiotic resistance in Staphylococcus aureus. Status and prospects. FEMS Microbiol Rev. 2017;41(3):430–449.
  • Kim L, McGee L, Tomczyk S, et al. Biological and epidemiological features of antibiotic-resistant streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin. Microbial Rev. 2016;29(3):525–552
  • Arya T, Kishor C, Saddanapu V, et al. Discovery of a new genetic variant of methionine aminopeptidase from Streptococci with possible post-translational modifications: biochemical and structural characterization. PLoS One. 2013;8(10):e75207.
  • Terreni M, Taccani M, Pregnolate M. New Antibiotics for Multidrug-Resistant Bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9):2671.
  • Rodrigues L, Cravo P, Viveiros M. Efflux pump inhibitors as a promising adjunct therapy against drug resistant tuberculosis: a new strategy to revisit mycobacterial targets and repurpose old drugs. Expert Rev Anti Infect Ther. 2020;18(8):741–757
  • O’Sullivan JN, Rea MC, Hill C, et al. Protecting the outside: biological tools to manipulate the skin microbiota. FEMS Microbiol Ecol. 2020;96(6):fiaa085
  • Liu Y, Tong Z, Shi J, et al. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics. 2021;11(10):4910–4928
  • Knoblauch R, Geddes CD. Carbon Nanodots in photodynamic antimicrobial Therapy: a review. Materials. 2020;13(18):4004.
  • Shukra AM, Sridevi NV, Chandran D, et al. Production of recombinant antibodies using bacteriophages. Eur J Microbiol Immunol. 2014;4(2):91–98
  • McConnell MJ. Where are we with monoclonal antibodies for multidrug resistant infections? Drug Discov Today. 2019;24(5):1132–1138.
  • Diago-Navarro E, Motley MP, Ruiz-Peréz G, et al. Novel, broadly reactive anticapsular antibodies against Carbapenem-resistant Klebsiella pneumoniae protect from infection. mBio. 2018;9(2):e00091–18
  • Gulati S, Beurskens FJ, de Kreuk BJ, et al. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol. 2019;17(6):e3000323
  • Thomsen IP, Sapparapu G, James DBA, et al. Monoclonal Antibodies Against the Staphylococcus aureus Bicomponent Leukotoxin AB Isolated Following Invasive Human Infection Reveal Diverse Binding and Modes of Action. J Infect Dis. 2017;215(7):1124–1131.
  • Torres MDT, Melo MCR, Crescenzi O, et al. Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng . 2021;6(1):67–75.
  • Pacios O, Blasco L, Bleriot I, et al. Strategies to Combat Multidrug-Resistant and Persistent Infectious Diseases. Antibiotics. 2020;9(2):65
  • Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents. Clin Microbiol Infect. 2020;26(5):596–603
  • de Oliveira Júnior NG, Franco OL. Promising strategies for future treatment of Klebsiella pneumoniae biofilms. Future Microbiol. 2020;15(1):63–79.
  • Lang C, Staiger C. Tyrothricin–an underrated agent for the treatment of bacterial skin infections and superficial wounds? Pharmazie. 2016;71(6):299–305.
  • Ling LL, Schneider T, Peoples AJ, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–459
  • Lewis K. At the crossroads of bioenergetics and antibiotic discovery. Biochemistry. 2020;85(12):1469–1483.
  • Shukla R, Medeiros-Silva J, Parmar A, et al. Mode of action of teixobactins in cellular membranes. Nat Commun. 2020;11(1):2848
  • Pirtskhalava M, Gabrielian A, Cruz P, et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 2016;44(D1):D1104–12.
  • Cardoso HM, Cândido SE, Oshiro KGN, et al. Peptides containing d-amino acids and retro-inverso peptides: general applications and special focus on antimicrobial peptides Koutsopulos, Sotirios . In: Peptide Applications in Biomedicine, Biotechnology and Bioengineering. (Woodhead Publishing). 2018. p. 131–155 9780081007365 https://www.sciencedirect.com/science/article/pii/B9780081007365000053 doi:https://doi.org/10.1016/B978-0-08-100736-5.00005-3 .
  • Buzea C, Pacheco II, Robbie K, et al. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71.
  • Akagi T, Baba M, Akashi M. Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer. 2007;48(23):6729–6747.
  • Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.
  • Sharma V, Kumar A, Dhawan A. Nanomaterials: exposure, effects and toxicity assessment. Proc Natl Acad Sci India Sect B Biol Sci. 2012;82(S1):3–11
  • Shaikh S, Nazam N, Rizvi SMD, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20(10):2468
  • Borthagaray G, Mondelli M, Facchin G, et al. Silver-containing nanoparticles in the research of new antimicrobial agents against ESKAPE pathogens Alexandru Mihai Grumezescu . In: Inorganic frameworks as smart Nanomedicines. (William Andrew Publishing). 2018. 317–386 9780128136614 https://www.sciencedirect.com/science/article/pii/B9780128136614000080) doi:https://doi.org/10.1016/B978-0-12-813661-4.00008-0.
  • Morones-Ramirez JR, Winkler JA, Spina CS, et al. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med. 2013;5(190):190ra81
  • Kumar R, Shukla SK, Pandey M, et al. Synthesis and antimicrobial effects of colloidal gold nanoparticles against prevalent waterborne bacterial pathogens. Cogent Chem. 2016;2(1):1192522
  • Tiwari V, Mishra N, Gadani K, et al. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front Microbiol. 2018;9:1218.
  • de Dicastillo CL, Patiño C, Galotto MJ, et al. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J Nanotechnol. 2019;10:1716–1725.
  • Barhoum A, García-Betancourt ML, Jeevanandam J, et al. Review on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials (Basel). 2022;12(2):177
  • Shapiro S. Speculative strategies for new antibacterials: all roads should not lead to Rome. J Antibiot. 2013;66(7):371–386.
  • Bradley JS, Broadhurst H, Cheng K, et al. Safety and efficacy of ceftazidime-avibactam plus metronidazole in the treatment of children ≥3 months to <18 years with complicated intra-abdominal Infection. Pediatr Infect Dis J. 2019;38(8):816–824
  • Kali A, Charles MVP, Srirangaraj S. Cadazolid: a new hope in the treatment of Clostridium difficile infection. Australas Med J. 2015;8(8):253–262.
  • Bakkeren E, Huisman JS, Fattinger SA, et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature. 2019;573(7773):276–280
  • Bilinski J, Grzesiowski P, Sorensen N, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis. 2017;65(3):364–370
  • Hols P, Ledesma-García L, Gabant P, et al. Mobilization of microbiota commensals and their bacteriocins for Therapeutics. Trends Microbiol. 2019;27(8):690–702
  • Mignolet J, Fontaine L, Sass A, et al. Circuitry rewiring directly couples competence to predation in the gut dweller streptococcus salivarius. Cell Rep. 2018;22(7):1627–1638
  • Vilà B, Fontgibell A, Badiola I, et al. Reduction of Salmonella enterica var. Enteritidis colonization and invasion by Bacillus cereus var. toyoi inclusion in poultry feeds. Poult Sci. 2009;88(5):975–979
  • Bories G, Brantom P, de Barberá JB, et al. Opinion of scientific the panel on additives and products or substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety and efficacy of the product Toyocerin® (Bacillus cereus var. toyoi) as feed additive for rabbit breeding does. EFSA J. 2008;912:1–13.
  • Borody TJ, Brandt LJ, Paramsothy S, et al. Fecal microbiota transplantation: a new standard treatment option for Clostridium difficile infection. Expert Rev Anti Infect Ther. 2014;11(5):447–449
  • Hwang IY, Koh E, Wong A, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017 article 15028; 81
  • Forssten S, Evans M, Wilson D, et al. Influence of a probiotic mixture on antibiotic induced microbiota disturbances. World J Gastroenterol. 2014;20(33):11878–11885
  • Warrack S, Panjikar P, Duster M, et al. Tolerability of a probiotic in subjects with a history of methicillin-resistant Staphylococcus aureus colonisation. Benef Microbes. 2014;5(4):389–395
  • Hua XT, Tang J, Mu DZ. Effect of oral administration of probiotics on intestinal colonization with drug-resistant bacteria in preterm infants. Zhongguo Dang Dai Er Ke Za Zhi. 2014;16(6):606–609.
  • Doron S, Hibberd PL, Goldin B, et al. Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant Enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother. 2015;59(8):4593–4599
  • Rongrungruang , Y , Krajangwittaya, D , Pholtawornkulchai, K et al Randomized controlled study of probiotics containing Lactobacillus casei (Shirota strain) for prevention of ventilator-associated pneumonia. J Med Assoc Thai. 2015;98(3):253–259
  • Kwon JH, Bommarito KM, Reske KA, et al. Randomized controlled trial to determine the impact of probiotic administration on colonization with multidrug-resistant organisms in critically ill patients. Infect Control Hosp Epidemiol. 2015;36(12):1451–1454
  • Warrack S, Ziegler M. A pilot randomized trial to determine the tolerability of a probiotic in patients colonized with vancomycin-resistant Enterococcus. J Probiotics Health. 2016;4.
  • Eggers S, Barker AK, Valentine S, et al. Effect of Lactobacillus rhamnosus HN001 on carriage of Staphylococcus aureus: results of the impact of probiotics for reducing infections in veterans (IMPROVE) study. BMC Infect Dis. 2018;18(1):129
  • Esaiassen E, Hjerde E, Cavanagh JP, et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. Front Pediatr. 2018;6:347.
  • Mahmoodpoor A, Hamishehklar H, Asghari R, et al. Effect of a probiotic preparation on ventilator-associated pneumonia in critically ill patients admitted to the intensive care unit: a prospective double-blind randomized controlled trial. Nutr Clin Pract. 2019;34(1):156–162
  • Dall LB, Lausch KR, Gedebjerg A, et al. Do probiotics prevent colonization with multi-resistant Enterobacteriaceae during travel? A randomized controlled trial. Trav Med Infect Dis. 2019;27:81–86.
  • Ljungquist O, Kampmann C, Resman F, et al. Probiotics for intestinal decolonization of ESBL-producing Enterobacteriaceae: a randomized, placebo-controlled clinical trial. Clin Microbiol Infect. 2020;26(4):456–462
  • Buyukeren M, Yigit S, Buyukcam A, et al. A new use of Lactobacillus rhamnosus GG administration in the NICU: colonized vancomycin-resistant enterococcus eradication in the gastrointestinal system. J Matern Fetal Neonatal Med. 2020 35 6 ;1–7
  • de Toro Martin-Consuegra I L, Sanchez-Casado M, Sánchez-Belmonte MJ P-P, et al. The influence of symbiotics in multi-organ failure: randomised trial. Med Clin (Barc). 2014;143(4):143–149
  • Salomao MCC, Heluany-Filho MA, Menegueti MG, et al. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli. Rev Soc Bras Med Trop. 2016;49(5):559–566
  • Sulakvelidze A, Alavidze Z, JG M Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659.
  • Hsu MN, Chang YH, Truong VA. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019;37(8):107447.
  • Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490–507.
  • Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol. 2014;32(11):1141–1145.
  • Mirski Lidia M, Nakonieczna A, Gryko R. Bacteriophages, phage endolysins, and antimicrobial peptides - the possibilities for their common use to combat infections and in the design of new drugs. Ann Agric Environ Med. 2019;26(2):203–209.
  • Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177–192
  • Waters EM, Neill DR, Kaman B, et al. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax. 2017;72(7):666–667
  • Kumaran D, Taha M, Yi Q, et al. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against staphylococcus aureus biofilms. Front Microbiol. 2018;9:127
  • Defoirdt T. Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol. 2017;26(4 313–328).
  • Irazoqui JE, Troemel ER, Feinbaum RL, et al. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010;6(7):e1000982
  • Irazoqui JE, Urbach JM, Ausubel FM. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol. 2010;10(1):47–58.
  • Peterson ND, Pukkila-Worley R. Caenorhabditis elegans in high-throughput screens for anti-infective compounds. Curr Opin Immunol. 2018;54:59–65.
  • Rajamuthiah R, Fuchs BB, Conery AL, et al. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One. 2015;10(4):e0124595
  • Rajamuthiah R, Fuchs BB, Jayamani E, et al. Whole animal automated platform for drug discovery against multidrug resistant Staphylococcus aureus. PLoS One. 2014;9:e89189.
  • Rajamuthiah R, Jayamani E, Majed H, et al. Antibacterial properties of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile. Bioorg Med Chem Lett. 2015;25(22):5203–5207
  • Natalie KB, Chengwen T, Christopher RF. Brief overview of approaches and challenges in new antibiotic development: a focus on drug repurposing. Front Cell Infect Microbiol. 2021;11:11 684515
  • Mohr KI. History of Antibiotics Research. Curr Top Microbiol Immunol. 2016 398 ;237–272.
  • Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40–51
  • Scannell JW, Blanckley A, Boldon H, et al. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug. 2012;11(3):191–200
  • United Nations. Call to Action on Antimicrobial Resistance(AMR)-2021. 2021 [cited 2022 Mar 14]. Available from: https://www.un.org/pga/75/wp-content/uploads/sites/100/2021/04/Call-to-Action-on-Antimicrobial-Resistance-AMR-2021.pdf
  • O’Neill J Review on antimicrobial resistance. tackling drug-resistant infections globally: final report and recommendations. 2016 [cited 2022 Mar 14]. Available from: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  • Priorities of the global leaders group on AMR for 2021-2022. 2021 [cited 2022 Mar 14]. Available from: Https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/glg-action-plan-july-2021_final.pdf?sfvrsn=daalbd02_5&download=true
  • Plan Nacional Resistencia Antibióticos. 2016 [cited 2022 Mar 14]. Available from: https://www.resistenciaantibioticos.es/es/system/files/content_images/folleto_pran.pdf
  • SuayGarcia B, Pérez-Gracia MT. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics-Basel. 2019;8(3):122.
  • Pérez-Moraga R, Forés-Martos J, Suay-García B, et al. A COVID-19 drug repurposing strategy through quantitative homological similarities using a topological data analysis-based framework. Pharmaceutics. 2021;13(4):488
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18(1):41–58
  • Langedijk J, Mantel-Teeuwisse AK, Slijkerman DS, et al. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov Today. 2015;20(8):1027–1034.
  • Suay-Garcia B, Falcó A, Bueso-Bordils JI, et al. Tree-Based QSAR model for drug repurposing in the discovery of new Antibacterial compounds against Escherichia coli. Pharmaceuticals. 2020;13(12):431
  • Garcia-Fernandez E, Koch G, Wagner RM, et al. Membrane microdomain disassembly inhibits MRSA antibiotic resistance. Cell. 2017;171(6):1354–1367
  • El-Halfawy OM, Czarny TL, Flannagan RS, et al. Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA. Nat Chem Biol. 2020;16(2):143–149
  • Brem J, van Berkel SS, Zollman D, et al. Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers. Antimicrob Agents Chemother. 2016;60(1):142–150
  • Chen C, Yang KW, Wu LY, et al. Disulfiram as a potent metallo-β-lactamase inhibitor with dual functional mechanisms. Chem Commun. 2020;56(18):2755–2758
  • Farha MA, Leung A, Sewell EW, et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol. 2013;8(1):226–233
  • Farha MA, Czarny TL, Myers CL, et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc Natl Acad Sci USA. 2015;112(35):11048–11053
  • Stokes J, MacNair C, Ilyas B, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol. 2017;2(5):17028
  • Meng Z, Xia K. Persistent spectral based machine learning (PerSpect ML) for drug design. Sci Adv. 2020;7:19.
  • Ericksen SS, Wu H, Zhang H, et al. Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening. J Chem Inf Model. 2017;57(7):1579–1590
  • Suay-Garcia B, Bueso-Bordils JI, Falcó A, et al. Quantitative structure-activity relationship methods in the discovery and development of antibacterials. Wiley Interdiscip Rev-Comput Mol Sci 2020; e1472
  • Singh S, Supuran CT. 3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c β-carbonic anhydrase from Mycobacterium tuberculosis and design of not yet synthesized new molecules. J Enzym Inhibit Med Chem. 2014;29(3):449–455.
  • Lima AN, Philot EA, Goulart T, et al. Use of machine learning approaches for novel drug discovery. Expert Opin Drug Discov. 2016;11(3) ;225–239.
  • Macalino SJY, Billones JB, Organo VG, et al. In Silico Strategies in Tuberculosis Drug Discovery. Molecules. 2020;25(3):665
  • Otter N, Porter MA, Tillmann U, et al. A roadmap for the computation of persistent homology. EPJ Data Sci. 2017;6(1):17
  • van Laarhoven T, Marchiori E. Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One. 2013;8(6):e66952
  • Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4(4):565–577.
  • Wang R, Li S, Cheng L, et al. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning. BMC Bioinformatics. 2019;20(Suppl 26):628
  • O’Neill J 2015. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. https://amr-review.org/sites/default/files/Antimicrobials%20in%20agri-culture%20and%20the%20environment%20%20Reducing%20unnecessary%20use%20and%20waste.pdf (cited 2019 Nov 15)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.