262
Views
0
CrossRef citations to date
0
Altmetric
Review

Vitamin D receptor gene polymorphism and vitamin D supplementation on clinical/ treatment outcome in tuberculosis: current and future perspectives

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 1179-1186 | Received 12 Dec 2021, Accepted 20 May 2022, Published online: 31 May 2022

References

  • World Health Organization [Internet]. Geneva: global tuberculosis report; 2021 cited 2022 Mar 23]. Available from 2022 Mar 23: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021
  • Huang SJ, Wang XH, Liu ZD, et al. Vitamin D deficiency and the risk of tuberculosis: a meta-analysis. Drug Des Devel Ther. 2017;11:91–102.
  • Junaid K, Rehman A. Impact of vitamin D on infectious disease-tuberculosis-a review. Clin Nutr Exp. 2019;25:1.
  • Fabbri A, Infante M, Ricordi C. Editorial - Vitamin D status: a key modulator of innate immunity and natural defense from acute viral respiratory infections. Eur Rev Med Pharmacol Sci. 2020;24(7):4048–4052.
  • Agier J, Brzezińska-Błaszczyk E, Żelechowska P, et al. Cathelicidin LL-37 affects surface and intracellular toll-like receptor expression in tissue mast cells. J Immunol Res. 2018;2018:7357162.
  • Lang PO, Aspinall R. Can we translate vitamin D immunomodulating effect on innate and adaptive immunity to vaccine response? Nutrients. 2015;7(3):2044–2060.
  • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D 3. FASEB J. 2005;19(9):1067–1077.
  • Subramanian K, Bergman P, Henriques-Normark B. Vitamin D promotes pneumococcal killing and modulates inflammatory responses in primary human Neutrophils. J Innate Immun. 2017;9(4):375–386.
  • Liu PT, Schenk M, Walker VP, et al. Convergence of IL-1β and VDR activation pathways in Human TLR2/1-Induced Antimicrobial responses. PLoS One. 2009;4(6):e5810.
  • The human protein atlas [Internet]. VDR – cited 2022 Mar 23]. Available from 2022 Mar 23: https://www.proteinatlas.org/ENSG00000111424-VDR/tissue
  • Vukić M, Neme A, Seuter S, et al. Relevance of vitamin D receptor target genes for monitoring the vitamin D responsiveness of primary human cells. PLoS One. 2015;10(4):e0124339.
  • Koivisto O, Hanel A, Carlberg C. Key vitamin D target genes with functions in the immune system. Nutrients. 2020;12(4):1140.
  • Hanel A, Neme A, Malinen M, et al. Common and personal target genes of the micronutrient vitamin D in primary immune cells from human peripheral blood. Sci Rep. 2020;10(1):21051.
  • Rode AKO, Kongsbak M, Hansen MM, et al. Vitamin D counteracts Mycobacterium tuberculosis-induced Cathelicidin downregulation in dendritic cells and allows Th1 differentiation and IFNγ secretion. Front Immunol. 2017;8:656.
  • Silva Miranda M, Breiman A, Allain S, et al. The tuberculous granuloma: an unsuccessful host defence mechanism providing a safety shelter for the bacteria? Clin Dev Immunol. 2012;2012:139127.
  • Fisher SA, Rahimzadeh M, Brierley C, et al. The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: a systematic review. PLoS One. 2019;14(9):e0222313.
  • Harishankar M, Anbalagan S, Selvaraj P. Effect of vitamin D3 on chemokine levels and regulatory T-cells in pulmonary tuberculosis. Int Immunopharmacol. 2016;34:86–91.
  • Bhatt K, Rafi W, Shah N, et al. 1,25 (OH)2D3 treatment alters the granulomatous response in M. tuberculosis infected mice. Sci Rep. 2016;6(1):34469.
  • Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D3 during Mycobacterium infection. Innate Immun. 2017;23(6):506–523.
  • Dalvi SM, Ramraje NN, Patil VW, et al. Study of IL-6 and vitamin D3 in patients of pulmonary tuberculosis. Indian J Tuberc. 2019;66(3):337–345.
  • Zhang YG, Wu S, Sun J. Vitamin D, Vitamin D receptor, and tissue barriers. Tissue Barriers. 2013;1(1):e23118.
  • Bellamy R. Evidence of gene-environment interaction in development of tuberculosis. Lancet. 2000;355(9204):588–589.
  • Panwar A, Garg RK, Malhotra HS, et al. 25-Hydroxy Vitamin D, Vitamin D receptor and toll-like receptor 2 polymorphisms in spinal tuberculosis: a case-control study. Medicine (Baltimore). 2016;95(17):e3418.
  • Cieślińska A, Kostyra E, Fiedorowicz E, et al. Single nucleotide polymorphisms in the vitamin D receptor gene (VDR) may have an impact on acute pancreatitis (AP) development: a prospective study in populations of AP patients and alcohol-abuse controls. Int J Mol Sci. 2018;19(7):1919.
  • de Jongh Rt, Lips P, Rijs KJ, et al. Associations between vitamin D receptor genotypes and mortality in a cohort of older Dutch individuals. Eur J Endocrinol. 2011;164(1):75–82.
  • Divanoglou N, Komninou D, Stea EA, et al. Association of vitamin D receptor gene polymorphisms with serum vitamin D levels in a Greek rural population (Velestino Study). Lifestyle Genom. 2021;14(3):81–90.
  • Altai Z, Viceconti M, Offiah AC, et al. Investigating the mechanical response of paediatric bone under bending and torsion using finite element analysis. Biomech Model Mechanobiol. 2018;17(4):1001–1009.
  • van Etten E, Verlinden L, Giulietti A, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. Eur J Immunol. 2007;37(2):395–405.
  • Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13(3):325–349.
  • Khan MI, Bielecka ZF, Najm MZ, et al. Vitamin D receptor gene polymorphisms in breast and renal cancer: current state and future approaches (review). Int J Oncol. 2014;44(2):349–363.
  • Tripathi G, Sharma R, Sharma RK, et al. Vitamin D receptor genetic variants among patients with end-stage renal disease. Ren Fail. 2010;32(8):969–977.
  • Neves JSF, Visentainer JEL, Reis DMDS, et al. The influence of vitamin D receptor gene polymorphisms in spondyloarthritis. Int J Inflam. 2020;2020:8880879.
  • Kaabachi W, Kaabachi S, Rafrafi A, et al. Association of vitamin D receptor FokI and ApaI polymorphisms with lung cancer risk in Tunisian population. Mol Biol Rep. 2014;41(10):6545–6553.
  • Bid HK, Mishra DK, Mittal RD. Vitamin-D receptor (VDR) gene (Fok-I, Taq-I and Apa-I) polymorphisms in healthy individuals from north Indian population. Asian Pac J Cancer Prev. 2005;6(2):147–152.
  • Mohammadi A, Khanbabaei H, Nasiri-Kalmarzi R, et al. Vitamin D receptor ApaI (rs7975232), BsmI (rs1544410), Fok1 (rs2228570), and TaqI (rs731236) gene polymorphisms and susceptibility to pulmonary tuberculosis in an Iranian population: a systematic review and meta-analysis. J Microbiol Immunol Infect. 2020;53(6):827–835.
  • Lee YH, Song GG. Vitamin D receptor gene FokI, TaqI, BsmI, and ApaI polymorphisms and susceptibility to pulmonary tuberculosis: a meta-analysis. Genet Mol Res. 2015;14(3):9118–9129.
  • Su Q, Ma X, Lin H, et al. Association between gene polymorphisms of vitamin D receptor and pulmonary tuberculosis susceptibility: a meta-analysis. J Med Coll PLA. 2011;26(2):63–75.
  • Gao L, Tao Y, Zhang L, et al. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int J Tuberc Lung Dis. 2010;14(1):15–23.
  • Chen C, Liu Q, Zhu L, et al. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. PLoS One. 2013;8(12):e83843.
  • Wilkinson RJ, Llewelyn M, Toossi Z, et al., Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis amongst Gujarati Asians in West London: a case-control study. Lancet. 2000;355(9204): 618–621.
  • Delgado JC, Baena A, Thim S, et al. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis. 2002;186(10):1463–1468.
  • Roth DE, Soto G, Arenas F, et al., Association between vitamin D receptor gene polymorphisms and response to treatment of pulmonary tuberculosis. J Infect Dis. 2004;190(5): 920–927.
  • Babb C, van der Merwe L, Beyers N, et al. Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary tuberculosis patients. Tuberculosis. 2007;87(4):295–302.
  • Magee MJ, Sun YV, Brust JCM, et al. Polymorphisms in the vitamin D receptor gene are associated with reduced rate of sputum culture conversion in multidrug-resistant tuberculosis patients in South Africa. PLoS One. 2017;12(7):e0180916.
  • Rathored J, Sharma SK, Singh B, et al. Risk and outcome of multidrug-resistant tuberculosis: vitamin D receptor polymorphisms and serum 25 (OH) D. Int J Tuberc Lung Dis. 2012;16(11):1522–1528.
  • Doherty MJ, Davies PDO, Bellis MA, et al. Tuberculosis in England and Wales: ethnic origin is more important than social deprivation. BMJ. 1995;311(6998):187.
  • Davies PDO, Grange JM. Factors affecting susceptibility and resistance to tuberculosis. Thorax. 2001;56(2):23–29.
  • Friedland JS, Shaw TC, Price NM, et al. Differential regulation of MMP-1/9 and TIMP-1 secretion in human monocytic cells in response to Mycobacterium tuberculosis. Matrix Biol. 2002;21(1):103–110.
  • Chesdachai S, Zughaier SM, Hao L, et al. The effects of first-line anti-tuberculosis drugs on the actions of vitamin D in human macrophages. J Clin Transl Endocrinol. 2016;6:23–29.
  • Tukvadze N, Sanikidze E, Kipiani M, et al. High-dose vitamin D3 in adults with pulmonary tuberculosis: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;102(5):1059–1069
  • Shao B, Jiang S, Muyiduli X, et al. Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Clin Nutr. 2018;37(6 Pt A):2230–2237.
  • Jolliffe DA, Walton RT, Griffiths CJ, et al. Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: review of genetic association studies. J Steroid Biochem Mol Biol. 2016;164:18–29.
  • Duan L, Xue Z, Ji H, et al. Effects of CYP2R1 gene variants on vitamin D levels and status: a systematic review and meta-analysis. Gene. 2018;678:361–369.
  • Hu Z, Tao S, Liu H, et al. The association between polymorphisms of Vitamin D Metabolic-Related Genes and Vitamin D3 Supplementation in Type 2 Diabetic Patients. J Diabetes Res. 2019;2019:8289741.
  • Allegra S, Fatiguso G, Calcagno A, et al. Role of vitamin D pathway gene polymorphisms on rifampicin plasma and intracellular pharmacokinetics. Pharmacogenomics. 2017;18(9):865–880.
  • Thomas L, Sekhar Miraj S, Surulivelrajan M, et al. Influence of single nucleotide Polymorphisms on rifampin pharmacokinetics in Tuberculosis Patients. Antibiotics (Basel). 2020;9(6):307.
  • Sheng L, Xue Y, He X, et al. Effects of repeated administration of rifampicin and isoniazid on vitamin D metabolism in mice. Steroids. 2015;104:203–207.
  • Wang Z, Schuetz EG, Xu Y, et al. Interplay between vitamin D and the drug metabolizing enzyme CYP3A4. J Steroid Biochem Mol Biol. 2013;136:54–58.
  • Wang Z, Lin YS, Dickmann LJ, et al. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug-induced osteomalacia. J Bone Miner Res. 2013;28(5):1101–1116.
  • Bengoa JM, Bolt MJ, Rosenberg IH. Hepatic vitamin D 25-hydroxylase inhibition by cimetidine and isoniazid. J Lab Clin Med. 1984;104(4):546–552.
  • Brodie MJ, Boobis AR, Hillyard CJ, et al. Effect of isoniazid on vitamin D metabolism and hepatic monooxygenase activity. Clin Pharmacol Ther. 1981;30(3):363–367.
  • Wen X, Wang JS, Neuvonen PJ, et al. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol. 2002;57(11):799–804.
  • Tostmann A, Wielders JP, Kibiki GS, et al. Serum 25-hydroxy-vitamin D3 concentrations increase during tuberculosis treatment in Tanzania. Int J Tuberc Lung Dis. 2010;14(9):1147–1152.
  • Naik AL, Rajan MG, Manjrekar PA, et al. Effect of DOTS treatment on vitamin D levels in pulmonary tuberculosis. J Clin Diagn Res. 2017;11(4):BC18–BC22.
  • Daley P, Jagannathan V, John KR, et al. Adjunctive vitamin D for treatment of active tuberculosis in India: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis. 2015;15(5):528–534.
  • Ralph AP, Lucas RM, Norval M. Vitamin D and solar ultraviolet radiation in the risk and treatment of tuberculosis. Lancet Infect Dis. 2013;13(1):77–88.
  • Sutaria N, Liu CT, Vitamin CTC, et al. Receptor gene polymorphisms, and supplementation on tuberculosis: a systematic review of case-control studies and randomized controlled trials. J Clin Transl Endocrinol. 2014;1(4):151–160.
  • Xia J, Shi L, Zhao L, et al. Impact of vitamin D supplementation on the outcome of tuberculosis treatment: a systematic review and meta-analysis of randomized controlled trials. Chin Med J (Engl). 2014;127(17):3127–3134.
  • Wallis RS, Zumla A. Vitamin D as adjunctive host-directed therapy in tuberculosis: a systematic review. Open Forum Infect Dis. 2016;3(3):ofw151.
  • Wu H-X, Xiong X-F, Zhu M, et al. Effects of vitamin D supplementation on the outcomes of patients with pulmonary tuberculosis: a systematic review and meta-analysis. BMC Pulm Med. 2018;18(1):108.
  • Wang J, Feng M, Ying S, et al. Efficacy and safety of vitamin D supplementation for pulmonary tuberculosis: a systematic review and meta-analysis. Iran J Public Health. 2018;47(4):466–472.
  • Soeharto DA, Rifai DA, Marsudidjadja S, et al. Vitamin D as an adjunctive treatment to standard drugs in pulmonary tuberculosis patients: an evidence-based case report. Advances in Preventive Medicine. 2019;2019:5181847.
  • Zhang J, Chen C, Yang J. Effectiveness of vitamin D supplementation on the outcome of pulmonary tuberculosis treatment in adults: a meta-analysis of randomized controlled trials. Chin Med J (Engl). 2019;132(24):2950–2959.
  • Panda S, Tiwari A, Luthra K, et al. Association of Fok1 VDR polymorphism with Vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci Rep. 2019;9(1):1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.