689
Views
1
CrossRef citations to date
0
Altmetric
Review

Classification for β-lactamases: historical perspectives

ORCID Icon
Pages 513-522 | Received 11 Jan 2023, Accepted 20 Mar 2023, Published online: 06 Apr 2023

References

  • Hall BG, Barlow M. Evolution of the serine β-lactamases: past, present and future. Drug Resist Updat. 2004 Apr;7(2):111–123.
  • D’Costa VM, King CE, Kalan L, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–461.
  • Perry J, Waglechner N, Wright G. The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med. 2016 Jun 1;6(6):7–14.
  • Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146:837.
  • Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018 Oct;62(10):e01076–18.
  • Richmond MH, Sykes RB. The β-lactamases of gram-negative bacteria and their possible physiological role. In: editors, Rose AH, Tempest DW. Advances in microbial physiology. New York: Academic Press; 1973. Vol. 9. 31–88.
  • Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond [Biol]. 1980;289:321–331.
  • Ambler RP, Coulson AFW, J-M F, et al. A standard numbering scheme for the Class A β-lactamases. Biochem J. 1991;276:269–272.
  • Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc Natl Acad Sci USA. 1981;78:4897–4901.
  • Huovinen P, Huovinen S, Jacoby GA. Sequence of PSE-2 betaβ-lactamase. Antimicrob Agents Chemother. 1988;32(1):134–136.
  • Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233.
  • Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010Dec07;54(3):969–976.
  • Fleming PC, Goldner M, Glass DG. Observations on the nature, distribution, and significance of cephalosporinase. Lancet. 1963 Jun 29;1(7296)1399–401.
  • Sawai T, Mitsuhashi S, Yamagishi S. Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in gram-negative rod bacteria resistant to -aminobenzylpenicillin. Jpn J Microbiol. 1968;12:423–434.
  • Jack GW, Richmond MH. Comparative amino acid contents of purified β-lactamases from enteric bacteria. FEBS Lett. 1970;12:30–32.
  • Sykes RB, Matthew M. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J Antimicrob Chemother. 1976;2:115–157.
  • Bush K. Recent developments in β-lactamase research and their implications for the future. Rev Infect Dis. 1988 Jul-Aug;10(4):681–690.
  • Bush K. Characterization of β-lactamases. Antimicrob Agents Chemother. 1989;33:259–263.
  • Bush K. Classification of β-lactamases: groups 2c, 2d, 2e, 3, and 4. Antimicrob Agents Chemother. 1989;33:271–276.
  • Bush K. Classification of β-lactamases: groups 1, 2a, 2b, and 2b’. Antimicrob Agents Chemother. 1989;33:264–270.
  • Jacoby GA, Bush K. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant β-lactamases: Lahey Clinic; 1997 [updated 2010 Aug 3 2010 Aug 3]. Available from: http://www.lahey.org/Studies/
  • Bush K, Palzkill T, Jacoby G. β-Lactamase Classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes Burlington, MA: Lahey Hospital & Medical Center; 2015 [updated 2015 Jun 2; cited 2023 Jun 2]. Available from: https://externalwebapps.lahey.org/studies/
  • Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother. 2004 Jul;48(7):2347–2349.
  • Brisse S. OXY, OKP, LEN β-lactamase protein variation home page 2012 [cited 2023 Jan 6, 2023]. Available from: http://www.pasteur.fr/ip/easysite/pasteur/en/research/plates-formes-technologiques/pasteur-genopole-ile-de-france/genotyping-of-pathogens-and-public-health-pf8/betaβ-lactamase-enzyme-variants/betaβ-lactamase-enzyme-variants
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017 Jan 04;45(D1):D566–D573.
  • Sayers EW, Beck J, Bolton EE, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2021 Jan 08;49(D1):D10–D17.
  • Feldgarden M, Brover V, Gonzalez-Escalona N, et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci Rep. 2021 Jun 16;11(1):12728.
  • Philippon A, Slama P, Deny P, et al. A structure-based classification of class A β-lactamases, a broadly diverse family of enzymes. Clin Microb Rev. 2016 Jan;29(1):29–57.
  • Philippon A, Jacquier H, Ruppe E, et al. Structure-based classification of class A β-lactamases, an update. Curr Res Translation Med. 2019;31:31.
  • Naas T, Oueslati S, Bonnin RA, et al. β-lactamase database (BLDB) - structure and function. J Enzyme Inhib Med Chem. 2017 Dec;32(1):917–919.
  • Mack AR, Barnes MD, Taracila MA, et al. A standard numbering scheme for class C β-lactamases. Antimicrob Agents Chemother. 2020 Feb 21;64(3):21.
  • Bradford PA, Bonomo RA, Bush K, et al. Consensus on β-lactamase nomenclature. Antimicrob Agents Chemother. 2022 Apr 19;66(4):e0033322.
  • Holt RJ, Stewart GT. Production of amidase and β-lactamase by bacteria. J Gen Microbiol. 1964 Aug;36:203–213.
  • Burman LG, Park JT, Lindstrom EB, et al. Resistance of Escherichia coli to penicillins: identification of the structural gene for the chromosomal penicillinase. J Bacteriol. 1973;116(1):123–130.
  • Jacoby GA. AmpC β-lactamases. Clin Microb Rev. 2009 [Jan 1];22(1):161–182.
  • Sabath LD, Abraham EP. Cephalosporinase and penicillinase activity of Bacillus cereus. Antimicrob Agents Chemother. 1965;5:392–397.
  • Sabath LD, Abraham EP. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J. 1966;98:11c–13c.
  • Sabath L, Jago M, Abraham EP. Cephalosporinase and penicillinase activity of β-lactamase from Pseudomonas pyocyanea. Biochem J. 1965;96:739–752.
  • Anderson ES, Datta N. Resistance to penicillins and its transfer in Enterobacteriaceae. Lancet. 1965;I:407–409.
  • Datta N, Richmond MH. The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. Biochem J. 1966;98:204–209.
  • Saino Y, Kobayashi F, Inoue M, et al. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother. 1982 Oct;22(4):564–570.
  • Sato K, Fujii T, Okamoto R, et al. Biochemical properties of β-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985;27:612–614.
  • Bicknell R, Waley SG. Cryoenzymology of Bacillus cereus β-lactamase II. Biochemistry. 1985;24:6876–6887.
  • Bush K, Bradford PA. Lactams and β-lactamase inhibitors: an overview. In: Silver LL, Bush K, editors. Antibiotics and antibiotic resistance. vol. cold spring harb perspect med. Cold Spring Harbor New York: Cold Spring Harbor Laboratory Press; 2016. p. 23–44.
  • Akova M, Bonfiglio G, Livermore DM. Susceptibility to β-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high- and low-level constitutive expression of L1 and L2 β-lactamases. J Med Microbiol. 1991 Oct;35(4):208–213.
  • Felici A, Amicosante G, Oratore A, et al. An overview of the kinetic parameters of class B β-lactamases. Biochem J. 1993;291:151–155.
  • Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35:147–151.
  • Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001 Apr;45(4):1151–1161.
  • Yan JJ, Hsueh PR, Ko WC, et al. Metallo–lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother. 2001 Aug;45(8):2224–2228.
  • Abboud MI, Damblon C, Brem J, et al. Interaction of avibactam with class B metallo–β-lactamases. Antimicrob Agents Chemother. 2016 10;60(10):5655–5662.
  • Bellais S, Poirel L, Naas T, et al. Genetic-biochemical analysis and distribution of the Ambler class A β-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum. Antimicrob Agents Chemother. 2000 Jan;44(1):1–9.
  • Tzelepi E, Giakkoupi P, Sofianou D, et al. Detection of extended-spectrum β-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Clin Microbiol. 2000 Feb;38(2):542–546.
  • Babini GS, Livermore DM. Antimicrobial resistance amongst Klebsiella spp. collected from intensive care units in Southern and Western Europe in 1997-1998. J Antimicrob Chemother. 2000 Feb;45(2):183–189.
  • Jarlier V, Nicolas M, Fournier G, et al. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988;10:867–878.
  • Karlowsky JA, Lob SH, DeRyke CA, et al. Prevalence of ESBL non-CRE Escherichia coli and Klebsiella pneumoniae among clinical isolates collected by the SMART global surveillance programme from 2015 to 2019. Int J Antimicrob Agents. 2022 Mar;59(3):106535.
  • Tufa TB, Fuchs A, Tufa TB, et al. High rate of extended-spectrum β-lactamase-producing gram-negative infections and associated mortality in Ethiopia: a systematic review and meta-analysis. Antimicrob. 2020 Aug 08;9(1):128.
  • Hujer KM, Hamza NS, Hujer AM, et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother. 2005 Jul;49(7):2941–2948.
  • Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009 May;53(5):1766–1771.
  • NCBI. National center for biotechnology information. Pathogen Detection Reference Gene Catalog. cited 2023 Feb 24. https://www.ncbi.nlm.nih.gov/pathogens/refgene/#.
  • Richmond MH. Purification and properties of the exopenicillinase from Staphylococcus aureus. Biochem J. 1963;88:452–459.
  • Herzberg O, Moult J. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. Science. 1987;236:694–701.
  • Zygmunt DJ, Stratton CW, Kernodle DS. Characterization of four β-lactamases produced by Staphylococcus aureus. Antimicrob Agents Chemother. 1992;36(2):440–445.
  • Fisher JF, Mobashery S. β-Lactams against the fortress of the Gram-positive Staphylococcus aureus bacterium. Chem Rev. 2021;121(6):3412–3463.
  • Galleni M, Lamotte-Brasseur J, Rossolini GM, et al. Standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother. 2001;45(3):660–663.
  • Ambler RP. The amino acid sequence of Staphylococcus aureus penicillinase. Biochem J. 1975;151:197–218.
  • Ambler RP, Scott GK. Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proc Natl Acad Sci USA. 1978;75:3732–3736.
  • Jacoby GA. β-lactamase nomenclature. Antimicrob Agents Chemother. 2006;50(4):1123–1129.
  • Massida O, Rossolini GM, The SG. Aeromonas hydrophila cphA gene: molecular heterogeneity among Class B metallo-β-lactamases. J Bacteriol. 1991;173:4611–4617.
  • Lopes BS. The conundrum of naming resistance gene determinants. J Antimicrob Chemother. 2016;71(12):3623–3624.
  • Evans BA. Comment on: resistance gene naming and numbering: is it a new gene or not? J Antimicrob Chemother. 2016;71(6):1742–1743.
  • Joris B, Ledent P, Dideberg O, et al. Comparison of the sequences of class A β-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother. 1991;35:2294–2301.
  • Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54:24–38.
  • Lupo V, Mercuri PS, Frere JM, et al. An extended reservoir of class D β-lactamases in non-clinical bacterial strains. Microbiol Spectr. 2022;10(2):e0031522.
  • Jacoby GA, Bonomo RA, Bradford PA, et al. Comment on: resistance gene naming and numbering: is it a new gene or not? J Antimicrob Chemother. 2016 Sep;71(9):2677–2678.
  • Lupo V, Mercuri PS, Frere JM, et al. An extended reservoir of class-D β-lactamases in non-clinical bacterial strains. Microbiol. 2022 Apr 27;10(2):e0031522.
  • Hall RM, Schwarz S. Resistance gene naming and numbering: is it a new gene or not? J Antimicrob Chemother. 2016 Mar;71(3):569–571.
  • Warburton PJ, Roberts AP. Comment on: resistance gene naming and numbering: is it a new gene or not? J Antimicrob Chemother. 2016;72(2):634–637.
  • Levy SB, McMurry LM, Burdett V, et al. Nomenclature for tetracycline resistance determinants. Antimicrob Agents Chemother. 1989 Aug;33(8):1373–1374.
  • Roberts M, Marilyn C, Roberts PD. Nomenclature for Tetracycline Genes: University of Washington; 2021 [cited 2023 Jan 2, 2023 Jan 2]. Available from: https://faculty.washington.edu/marilynr/tetnomenclature.pdf
  • Chopra I, Roberts MC. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260.
  • Shaw KJ, Rather PN, Hare RS, et al. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163.
  • Lee JH, Bae IK, Lee SH. New definitions of extended-spectrum β-lactamase conferring worldwide emerging antibiotic resistance. Medicinal Res Rev. 2012 Jan;32(1):216–232.
  • Livermore DM. Defining an extended-spectrum β-lactamase. Clin Microbiol Infect. 2008;14(Suppl 1):3–10.
  • Giske CG, Sundsfjord AS, Kahlmeter G, et al. Redefining extended-spectrum β-lactamases: balancing science and clinical need. J Antimicrob Chemother. 2009;63:1–4.
  • Sader HS, Rhomberg PR, Farrell DJ, et al. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011;55(5):2390–2394.
  • Bush K, Jacoby GA, Amicosante G, et al. Comment on: redefining extended-spectrum β-lactamases: balancing science and clinical need. J Antimicrob Chemother. 2009 Jul;64(1):212–213.
  • Vanhoof R, Hannecart-Pokorni E, Content J. Nomenclature of genes encoding aminoglycoside-modifying enzymes. Antimicrob Agents Chemother. 1998 Feb;42(2):483.
  • NCBI, Information NCBI. How to request new alleles for β-lactamase, MCR, and Qnr Genes: NIH national library of medicine; 2022 [cited 2023 Jan 10, 2023]. Available from: https://www.ncbi.nlm.nih.gov/pathogens/submit-betaβ-lactamase/
  • Frere JM. Quantitative relationship between sensitivity to β-lactam antibiotics and β-lactamase production in gram-negative bacteria–I. Steady-state treatment. Biochem Pharmacol. 1989 May 01;38(9):1415–1426.
  • J-M F, Joris B, Crine M, et al. Quantitative relationship between sensitivity to β-lactam antibiotics and β-lactamase production in gram-negative bacteria. II. Non-steady-state treatment and progress curves. Biochem Pharmacol. 1989;38:1427–1433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.