440
Views
0
CrossRef citations to date
0
Altmetric
Review

Ampicillin-resistant and vancomycin-susceptible Enterococcus faecium bacteremia: a clinical narrative review

ORCID Icon, , , , , , , , & show all
Pages 759-775 | Received 01 Jan 2023, Accepted 07 Jun 2023, Published online: 14 Jun 2023

References

  • García-Solache M, Rice LB. The enterococcus: a model of adaptability to its environment. Clin Microbiol Rev. 2019;32(2):e00058–18. DOI:10.1128/CMR.00058-18.
  • Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–278. DOI:10.1038/nrmicro2761.
  • Dadashi M, Sharifian P, Bostanshirin N, et al. The global prevalence of daptomycin, tigecycline, and linezolid-resistant enterococcus faecalis and enterococcus faecium strains from human clinical samples: a systematic review and meta-analysis. Front Med. 2021;8:720647. DOI:10.3389/fmed.2021.720647
  • Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–327. DOI:10.1016/S1473-3099(17)30753-3
  • Mestrovic T, Robles Aguilar G, Swetschinski LR, et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public Heal. 2022;7(11):e897–e913. DOI:10.1016/S2468-2667(22)00225-0
  • Lee T, Pang S, Abraham S, et al. Antimicrobial-resistant CC17 Enterococcus faecium: the past, the present and the future. J Glob Antimicrob Resist. 2019;16:36–47. DOI:10.1016/j.jgar.2018.08.016
  • Surveillance Atlas of Infectious Diseases [Internet]. [cited 2021 Nov 13]. Available from: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4.
  • Pfaller MA, Mendes RE, Duncan LR, et al. Activity of dalbavancin and comparator agents against Gram-positive cocci from clinical infections in the USA and Europe 2015–16. J Antimicrob Chemother. 2018;73(10):2748–2756. DOI:10.1093/jac/dky235
  • Tran TT, Villegas SG, Aitken SL, et al. New perspectives on antimicrobial agents: long-acting lipoglycopeptides. Antimicrob Agents Chemother. 2022;66(6):e0261420. DOI:10.1128/aac.02614-20
  • Cattoir V, Giard J-C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Rev Anti Infect Ther. 2014;12(2):239–248. DOI:10.1586/14787210.2014.870886.
  • Rosselli Del Turco E, Bartoletti M, Dahl A, et al. How do I manage a patient with enterococcal bacteraemia? Clin. Microbiol Infect. 2021;27(3):364–371. DOI:10.1016/j.cmi.2020.10.029
  • Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018;41:76–82. doi: 10.1016/j.mib.2017.11.030
  • Freitas AR, Pereira AP, Novais C, et al. Multidrug-resistant high-risk Enterococcus faecium clones: can we really define them? Int J Antimicrob Agents. 2021;57(1):106227. DOI:10.1016/j.ijantimicag.2020.106227
  • Montealegre MC, Roh H, Rae M, et al. Differential penicillin-binding protein 5 (pbp5) levels in the enterococcus faecium clades with different levels of ampicillin resistance. Antimicrob Agents Chemother. 2017;61(1):1–10. DOI:10.1128/AAC.02034-16
  • Cattoir V, Isnard C, Cosquer T, et al. Genomic analysis of reduced susceptibility to tigecycline in enterococcus faecium. Antimicrob Agents Chemother. 2015;59(1):239–244. DOI:10.1128/AAC.04174-14
  • Kellogg SL, Little JL, Hoff JS, et al. Requirement of the CroRS two-component system for resistance to cell wall-targeting antimicrobials in enterococcus faecium. Antimicrob Agents Chemother. 2017;61(5):1–11. DOI:10.1128/AAC.02461-16
  • Bialvaei AZ, Rahbar M, Yousefi M, et al. Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother. 2017;72(2):354–364. DOI:10.1093/jac/dkw450
  • Eucast Clinical Breakpoints [Internet]. [cited 2021 May 6]. Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_11.0_Breakpoint_Tables.pdf.
  • Conde-Estévez D, Sorli L, Morales-Molina JA, et al. Características clínicas diferenciales entre las bacteriemias por Enterococcus faecalis y Enterococcus faecium. Enferm Infec Microbiol Clin. 2010;28(6):342–348. DOI:10.1016/j.eimc.2009.06.011
  • Miller WR, Murray BE, Rice LB, et al. Resistance in vancomycin-resistant enterococci. Infect Dis Clin North Am. 2020;34(4):751–771. DOI:10.1016/j.idc.2020.08.004
  • Cercenado E. Enterococcus: resistencias fenotípicas y genotípicas y epidemiología en España. Enferm Infec Microbiol Clin. 2011;29:59–65. doi: 10.1016/S0213-005X(11)70045-3
  • Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014;12(10):1221–1236. DOI:10.1586/14787210.2014.956092.
  • Djorić D, Little JL, Kristich CJ. Multiple low-reactivity class B penicillin-binding proteins are required for cephalosporin resistance in enterococci. Antimicrob Agents Chemother. 2020;64(4):e02273–19. DOI:10.1128/AAC.02273-19.
  • Turnidge J, Kahlmeter G, Cantón R, et al. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: a EUCAST position paper. Clin Microbiol Infect. 2020;26(8):1039–1043. DOI:10.1016/j.cmi.2020.04.027
  • Allen GP, Bierman BC. In vitro analysis of resistance selection by linezolid in vancomycin-susceptible and -resistant Enterococcus faecalis and Enterococcus faecium. Int J Antimicrob Agents. 2009;34(1):21–24. DOI:10.1016/j.ijantimicag.2008.12.011.
  • Bhavnani SM, Drake JA, Forrest A, et al. A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis. 2000;36(3):145–158. DOI:10.1016/S0732-8893(99)00136-4
  • Matsumura T, Nagao M, Nakano S, et al. Enterococcal bacteraemia: predictive and prognostic risk factors for ampicillin resistance. Epidemiol Infect. 2018;146(16):2028–2035. DOI:10.1017/S0950268818002479
  • Zhang Y, Du M, Chang Y, et al. Incidence, clinical characteristics, and outcomes of nosocomial Enterococcus spp. bloodstream infections in a tertiary-care hospital in Beijing, China: a four-year retrospective study. Antimicrob Resist Infect Control. 2017;6(1):73. DOI:10.1186/s13756-017-0231-y
  • Billington EO, Phang SH, Gregson DB, et al. Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis. 2014;26:76–82. DOI:10.1016/j.ijid.2014.02.012
  • Hamada Y, Magarifuchi H, Oho M, et al. Clinical features of enterococcal bacteremia due to ampicillin-susceptible and ampicillin-resistant enterococci: an eight-year retrospective comparison study. J Infect Chemother. 2015;21(7):527–530. DOI:10.1016/j.jiac.2015.04.001
  • Pinholt M, Østergaard C, Arpi M, et al. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006–2009: a population-based cohort study. Clin Microbiol Infect. 2014;20(2):145–151. DOI:10.1111/1469-0691.12236
  • Álvarez-Artero E, Campo-Nuñez A, García-García I, et al. Infección urinaria por enterococos: Factores de riesgo y mortalidad. Estudio observacional. Revista Clínica Española. 2021;221(7):375–383. (English Ed. doi:10.1016/j.rce.2020.09.005.
  • Suppli M, Aabenhus R, Harboe ZB, et al. Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy. Clin Microbiol Infect. 2011;17(7):1078–1083. DOI:10.1111/j.1469-0691.2010.03394.x
  • Linden PK, Pasculle AW, Manez R, et al. Differences in outcomes for patients with bacteremia due to vancomycin-resistant enterococcus faecium or vancomycin-susceptible E. faecium. Infect Dis. 1996;22(4):663–670. DOI:10.1093/clinids/22.4.663
  • Conde-Estévez D, Grau S, Albanell J, et al. Clinical characteristics and outcomes of patients with vancomycin- susceptible Enterococcus faecalis and Enterococcus faecium bacteraemia in cancer patients. Eur J Clin Microbiol Infect Dis. 2011;30(1):103–108. DOI:10.1007/s10096-010-1029-5
  • Lester CH, Sandvang D, Olsen SS, et al. Emergence of ampicillin-resistant enterococcus faecium in Danish hospitals. J Antimicrob Chemother. 2008;62(6):1203–1206. DOI:10.1093/jac/dkn360
  • Kavanagh KT. Control of MSSA and MRSA in the United States: protocols, policies, risk adjustment and excuses. Antimicrob Resist Infect Control. 2019;8(1):1–8. DOI:10.1186/s13756-019-0550-2.
  • Zhou X, Willems RJL, Friedrich AW, et al. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control. 2020;9(1):1–13. DOI:10.1186/s13756-020-00770-1
  • Diekema DJ, Hsueh PR, Mendes RE, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2019;63(7):1–10. DOI:10.1128/AAC.00355-19
  • de Kraker M.E.A, Jarlier V, Monen JCM, et al. The changing epidemiology of bacteraemias in Europe: trends from the European antimicrobial resistance surveillance system. Clin Microbiol Infect. 2013;19(9):860–868. DOI:10.1111/1469-0691.12028
  • Giacobbe DR, Labate L, Tutino S, et al. Enterococcal bloodstream infections in critically ill patients with COVID-19: a case series. Ann Med. 2021;53(1):1779–1786. DOI:10.1080/07853890.2021.1988695
  • Fortún J, Coque TM, Martín-Dávila P, et al. Risk factors associated with ampicillin resistance in patients with bacteraemia caused by Enterococcus faecium. J Antimicrob Chemother. 2002;50(6):1003–1009. DOI:10.1093/jac/dkf216
  • Caballero-Granado FJ, Becerril B, Cuberos L, et al. Attributable mortality rate and duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis. 2001;32(4):587–594. DOI:10.1086/318717
  • McBride SJ, Upton A, Roberts SA. Clinical characteristics and outcomes of patients with vancomycin-susceptible Enterococcus faecalis and Enterococcus faecium bacteraemia—a five-year retrospective review. Eur J Clin Microbiol Infect Dis. 2010;29(1):107–114. DOI:10.1007/s10096-009-0830-5.
  • Echeverria-Esnal D, Sorli L, Prim N, et al. Linezolid vs glycopeptides in the treatment of glycopeptide-susceptible Enterococcus faecium bacteraemia: a propensity score matched comparative study. Int J Antimicrob Agents. 2019;54(5):572–578. DOI:10.1016/j.ijantimicag.2019.08.018
  • Gudiol C, Ayats J, Camoez M, et al. Increase in bloodstream infection due to vancomycin-susceptible enterococcus faecium in cancer patients: risk factors, molecular epidemiology and outcomes. PLoS ONE. 2013;8(9):74734. DOI:10.1371/journal.pone.0074734
  • Martínez-Odriozola P, Muñoz-Sánchez J, Gutiérrez-Macías A, et al. Análisis de 182 episodios de bacteriemia por enterococo: Estudio de la epidemiología, microbiología y evolución clínica. Enferm Infec Microbiol Clin. 2007;25(8):503–507. DOI:10.1157/13109986
  • DiazGranados CA, Zimmer SM, Mitchel K, et al. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin Infect Dis. 2005;41(3):327–333. DOI:10.1086/430909
  • Zasowski EJ, Claeys KC, Lagnf AM, et al. Time is of the essence: the impact of delayed antibiotic therapy on patient outcomes in hospital-onset enterococcal bloodstream infections. Clin Infect Dis. 2016;62(10):1242–1250. DOI:10.1093/cid/ciw110
  • Hoge CW, Adams J, Buchanan B, et al. Enterococcal bacteremia: to treat or not to treat, a reappraisal. Rev Infect Dis. 1991;13(4):600–605. DOI:10.1093/clinids/13.4.600
  • Mercuro NJ, Davis SL, Zervos MJ, et al. Combatting resistant enterococcal infections: a pharmacotherapy review. Expert Opin Pharmacother. 2018;19(9):979–992. DOI:10.1080/14656566.2018.1479397
  • Butler MS, Hansford KA, Blaskovich MAT, et al. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014;67(9):631–644. DOI:10.1038/ja.2014.111
  • Bin JM, Vasoo S, Menon SR, et al. Pharmacokinetic/Pharmacodynamic determinants of vancomycin efficacy in enterococcal bacteremia. Antimicrob Agents Chemother. 2018;62(3):e01602–17. DOI:10.1128/AAC.01602-17
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant staphylococcus aureus infections: a revised consensus guideline and review by the American society of health-system pharmacists, the infectious diseases society of America, the pediatric infectious diseases society, and the society of infectious diseases pharmacists. Am J Heal Pharm. 2020;77(11):835–864. DOI:10.1093/ajhp/zxaa036
  • Abdul-Aziz MH, Alffenaar JWC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive care Med. 2020;46(6):1127–1153. DOI:10.1007/s00134-020-06050-1
  • Guskey MT, Pharm D, Tsuji BT, et al. A comparative review of the Lipoglycopeptides: oritavancin, Dalbavancin, and Telavancin. Pharmacotherapy. 2010;30(1):80–94. DOI:10.1592/phco.30.1.80
  • Burdette SD, Trotman R, Saravolatz LD. Tedizolid: the first once-daily oxazolidinone class antibiotic. clin. Clin Infect Dis. 2015;61(8):1315–1321. DOI:10.1093/cid/civ501.
  • Heidary M, Khosravi AD, Khoshnood S, et al. Daptomycin. J Antimicrob Chemother. 2018;73(1):1–11. DOI:10.1093/jac/dkx349
  • Bhavnani SM, Rubino CM, Ambrose PG, et al. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50(12):1568–1574. DOI:10.1086/652767
  • Peterson LR. A review of tigecycline - the first glycylcycline. Int J Antimicrob Agents. 2008;32:S215–S222. doi: 10.1016/S0924-8579(09)70005-6
  • Yahav D, Lador A, Paul M, et al. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother. 2011;66(9):1963–1971. DOI:10.1093/jac/dkr242
  • FICHA TECNICA TYGACIL 50 MG POLVO PARA SOLUCION PARA PERFUSION [Internet]. [cited 2022 Aug 22]. Available from: https://cima.aemps.es/cima/dochtml/ft/06336001/FT_06336001.html.
  • FICHA TECNICA XYDALBA 500 MG DE POLVO PARA CONCENTRADO PARA SOLUCION PARA PERFUSION [Internet]. [cited 2022 Aug 22]. Available from: https://cima.aemps.es/cima/dochtml/ft/114986001/FT_114986001.html.
  • Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev. 2016;29(2):321–347. DOI:10.1128/CMR.00068-15
  • FICHA TECNICA FOSFOCINA 4 G POLVO PARA SOLUCION PARA PERFUSION [Internet]. [cited 2022 Sep 2]. Available from: https://cima.aemps.es/cima/dochtml/ft/50878/FT_50878.html.
  • Lexicomp [Internet]. [cited 2023 Jan 1]. Available from: https://online.lexi.com/lco/action/home.
  • Home - Sanford Guide - Antimicrobial Stewardship [Internet]. [cited 2023 Jan 1]. Available from: https://www.sanfordguide.com/.
  • CIMA: VANCOMICINA NORMON 1000 MG POLVO PARA CONCENTRADO PARA SOLUCION PARA PERFUSION EFG [Internet]. [cited 2023 Jan 1]. Available from: https://cima.aemps.es/cima/publico/detalle.html?nregistro=85651.
  • Roberts JA, Bellomo R, Cotta MO, et al. Machines that help machines to help patients: optimising antimicrobial dosing in patients receiving extracorporeal membrane oxygenation and renal replacement therapy using dosing software. Intensive care Med. 2022;48(10):1338–1351. DOI:10.1007/s00134-022-06847-2
  • Wi J, Noh H, Min KL, et al. Population pharmacokinetics and dose optimization of teicoplanin during venoarterial extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2017;61(9):e01015–17. DOI:10.1128/AAC.01015-17
  • Shi L, Zhuang Z, Duan L, et al. Dose optimization of teicoplanin for critically ill patients with renal dysfunction and continuous renal replacement therapy: experience from a prospective interventional study. Front Pharmacol. 2022;13:817401. DOI:10.3389/fphar.2022.817401
  • Zhang SH, Zhu ZY, Chen Z, et al. Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob Agents Chemother. 2020;64(6):e00133–20. DOI:10.1128/AAC.00133-20
  • Cojutti P, Pai MP, Pea F. Population pharmacokinetics and dosing considerations for the use of linezolid in overweight and obese adult patients. Clin Pharmacokinet. 2018;57(8):989–1000. DOI:10.1007/s40262-017-0606-5.
  • De Rosa FG, Corcione S, Baietto L, et al. Pharmacokinetics of linezolid during extracorporeal membrane oxygenation. Int J Antimicrob Agents. 2013;41(6):590–591. DOI:10.1016/j.ijantimicag.2013.01.016
  • Kühn D, Metz C, Seiler F, et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study. Crit Care. 2020;24(1):664. DOI:10.1186/s13054-020-03397-1
  • CIMA: ZYVOXID 2 mg/ml SOLUCION PARA PERFUSION [Internet]. [cited 2023 Jan 1]. Available from: https://cima.aemps.es/cima/publico/detalle.html?nregistro=64106.
  • Liu Y, Ge X-H, Guo H-L, et al. A systematic review of linezolid pharmacokinetics/pharmacodynamics in patients undergoing continuous renal replacement therapy: does one size fit all? Curr Drug Metab. 2023;24(1):70–77. DOI:10.2174/1389200224666221228144117
  • Barrasa H, Soraluce A, Isla A, et al. Pharmacokinetics of linezolid in critically ill patients on continuous renal replacement therapy: influence of residual renal function on PK/PD target attainment. J Crit Care. 2019;50:69–76. DOI:10.1016/j.jcrc.2018.11.016
  • Wang X, Wang Y, Yao F, et al. Pharmacokinetics of linezolid dose adjustment for creatinine clearance in critically ill patients: a multicenter, prospective, open-label, observational study. Drug Des Devel Ther. 2021;15:2129–2141. DOI:10.2147/DDDT.S303497
  • Hui LA, Bodolea C, Vlase L, et al. Linezolid administration to critically ill patients: intermittent or continuous infusion? A systematic literature search and review. Antibiotics. 2022;11(4):436. DOI:10.3390/antibiotics11040436
  • El-Gaml RM, El-Khodary NM, Abozahra RR, et al. Applying pharmacokinetic/pharmacodynamic measurements for linezolid in critically ill patients: optimizing efficacy and reducing resistance occurrence. Eur J Clin Pharmacol. 2022;78(8):1301–1310. DOI:10.1007/s00228-022-03340-z
  • CIMA: SIVEXTRO 200 MG POLVO PARA CONCENTRADO PARA SOLUCION PARA PERFUSION [Internet]. [cited 2023 Jan 1]. Available from: https://cima.aemps.es/cima/publico/detalle.html?nregistro=115991003.
  • FICHA TECNICA CUBICIN 350 MG POLVO PARA SOLUCION INYECTABLE Y PARA PERFUSION [Internet]. [cited 2022 Sep 13]. Available from: https://cima.aemps.es/cima/dochtml/ft/05328001/FT_05328001.html.
  • Butterfield-Cowper JM. A pharmacokinetic-pharmacodynamic analysis to dose optimize daptomycin in vancomycin-resistant enterococcus faecium: is the answer fixed dosing or lowering breakpoints? Ann Pharmacother. 2021;55(7):846–855. DOI:10.1177/1060028020971216.
  • Soraluce A, Asín-Prieto E, Rodríguez-Gascón A, et al. Population pharmacokinetics of daptomycin in critically ill patients. Int J Antimicrob Agents. 2018;52(2):158–165. DOI:10.1016/j.ijantimicag.2018.03.008
  • Alobaid AS, Hites M, Lipman J, et al. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents. 2016;47(4):259–268. DOI:10.1016/j.ijantimicag.2016.01.009
  • Fox AN, Smith WJ, Kupiec KE, et al. Daptomycin dosing in obese patients: analysis of the use of adjusted body weight versus actual body weight. Ther Adv Infect Dis. 2019;6:2049936118820230. DOI:10.1177/2049936118820230
  • Xie F, Li S, Cheng Z. Population pharmacokinetics and dosing considerations of daptomycin in critically ill patients undergoing continuous renal replacement therapy. J Antimicrob Chemother. 2021;75(6):1559–1566. DOI:10.1093/jac/dkaa028.
  • Chen J, Li S, Wang Q, et al. Optimizing antimicrobial dosing for critically ill patients with mrsa infections: a new paradigm for improving efficacy during continuous renal replacement therapy. Pharmaceutics. 2022;14(4):842. DOI:10.3390/pharmaceutics14040842
  • Alraish R, Wicha SG, Frey OR, et al. Pharmacokinetics of tigecycline in critically ill patients with liver failure defined by maximal liver function capacity test (LiMax). Ann Intensive Care. 2020;10(1):106. DOI:10.1186/s13613-020-00707-2
  • Bastida C, Hernández-Tejero M, Cariqueo M, et al. Tigecycline population pharmacokinetics in critically ill patients with decompensated cirrhosis and severe infections. J Antimicrob Chemother. 2022;77(5):1365–1371. DOI:10.1093/jac/dkac036
  • Zhang Y, Hu H, Zhang Q, et al. Effects of ex vivo extracorporeal membrane oxygenation circuits on sequestration of antimicrobial agents. Front Med. 2021;8:748769. DOI:10.3389/fmed.2021.748769
  • Gatti M, Pea F. Antimicrobial dose reduction in continuous renal replacement therapy: myth or real need? A practical approach for guiding dose optimization of novel antibiotics. Clin Pharmacokinet. 2021;60(10):1271–1289. DOI:10.1007/s40262-021-01040-y.
  • CIMA: TENKASI 400 MG POLVO PARA CONCENTRADO PARA SOLUCION PARA PERFUSION [Internet]. [cited 2023 Jan 1]. Available from: https://cima.aemps.es/cima/publico/detalle.html?nregistro=115989001.
  • Álvarez R, Cortés LEL, Molina J, et al. Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother. 2016;60(5):2601–2609. DOI:10.1128/AAC.03147-14
  • Alvarez-Arango S, Ogunwole SM, Sequist TD, et al. Vancomycin infusion reaction — moving beyond “red man syndrome”. N Engl J Med. 2021;384(14):1283–1286. DOI:10.1056/NEJMp2031891
  • Campoli-Richards DM, Brogden RN, Faulds DAROIAAPPATP. Teicoplanin. Drugs. 1990;40(3):449–486. DOI:10.2165/00003495-199040030-00007.
  • Yamaguchi R, Yamamoto T, Okamoto K, et al. Teicoplanin and vancomycin as treatment for glycopeptide-susceptible Enterococcus faecium bacteraemia: a propensity score-adjusted non-inferior comparative study. J Antimicrob Chemother. 2023;78(5):1231–1240. DOI:10.1093/jac/dkad079
  • Ha S, Huh K, Chung DR, et al. Efficacy of teicoplanin in bloodstream infections caused by Enterococcus faecium: posthoc analysis of a nationwide surveillance. Int J Infect Dis. 2022;122:506–513. DOI:10.1016/j.ijid.2022.06.029
  • Wald-Dickler N, Holtom P, Spellberg B. BustIng the myth of “static vs cidal”: a systemic literature review. Clin Infect Dis. 2018;66(9):1470–1474. DOI:10.1093/cid/cix1127.
  • Shi C, Xia J, Ye J, et al. Effect of renal function on the risk of thrombocytopaenia in patients receiving linezolid therapy: a systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88(2):464–475. DOI:10.1111/bcp.14965
  • Britt NS, Potter EM, Patel N, et al. Comparison of the effectiveness and safety of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection: a national cohort study of veterans affairs patients. Clin Infect Dis. 2015;61(6):871–878. DOI:10.1093/cid/civ444
  • Gatti M, Raschi E, De Ponti F. Serotonin syndrome by drug interactions with linezolid: clues from pharmacovigilance-pharmacokinetic/pharmacodynamic analysis. Eur J Clin Pharmacol. 2021;77(2):233–239. DOI:10.1007/s00228-020-02990-1.
  • Kinnear CL, Patel TS, Young CL, et al. Impact of an antimicrobial stewardship intervention on within- and between-patient daptomycin resistance evolution in vancomycin-resistant enterococcus faecium. Antimicrob Agents Chemother. 2017;63(4):e01800–18. DOI:10.1128/AAC.01800-18
  • Egli A, Schmid H, Kuenzli E, et al. Association of daptomycin use with resistance development in Enterococcus faecium bacteraemia—a 7-year individual and population-based analysis. Clin Microbiol Infect. 2017;23(2):.e118.1–.e118.7. DOI:10.1016/j.cmi.2016.10.003
  • Mendes RE, Castanheira M, Farrell DJ, et al. Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency. J Antimicrob Chemother. 2016;71:3453–3458. DOI:10.1093/jac/dkw319
  • Supandy A, Mehta HH, Tran TT, et al. Evolution of enterococcus faecium in response to a combination of daptomycin and fosfomycin reveals distinct and diverse adaptive strategies. Antimicrob Agents Chemother. 2022;66(6):e0233321. DOI:10.1128/aac.02333-21
  • FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new Boxed Warning | FDA [Internet]. [cited 2021 Dec 7]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-increased-risk-death-iv-antibacterial-tygacil-tigecycline.
  • Karageorgopoulos DE, Falagas ME. New antibiotics: optimal use in current clinical practice. Int J Antimicrob Agents. 2009;34:S55–S62. doi: 10.1016/S0924-8579(09)70569-2
  • Patel R, Gallagher JC. Vancomycin-resistant Enterococcal bacteremia pharmacotherapy. Ann Pharmacother. 2015;49(1):69–85. DOI:10.1177/1060028014556879.
  • Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob Agents Chemother. 2014;58(2):734–739. DOI:10.1128/AAC.01289-13.
  • Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56(5):923–929. DOI:10.1093/jac/dki355.
  • Chuang YC, Lin HY, Chen PY, et al. Daptomycin versus linezolid for the treatment of vancomycin-resistant enterococcal bacteraemia: implications of daptomycin dose. Clin Microbiol Infect. 2016;22(10):.e890.1–.e890.7. DOI:10.1016/j.cmi.2016.07.018
  • Chuang YC, Wang JT, Lin HY, et al. Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis. 2014;14(1):687. DOI:10.1186/s12879-014-0687-9
  • Biswas PP, Dey S, Sen A, et al. Molecular characterization of virulence genes in vancomycin-resistant and vancomycin-sensitive enterococci. J Glob Infect Dis. 2016;8(1):16–24. DOI:10.4103/0974-777X.176141
  • Mouwen A-M-M, Dijkstra JA, Jong E, et al. Early switching of antibiotic therapy from intravenous to oral using a combination of education, pocket-sized cards and switch advice: a practical intervention resulting in reduced length of hospital stay. International Journal Of Antimicrobial Agents. 2020;55(1):105769. DOI:10.1016/j.ijantimicag.2019.07.020
  • Willekens R, Puig-Asensio M, Ruiz-Camps I, et al. Early oral switch to linezolid for low-risk patients with staphylococcus aureus bloodstream infections: a propensity-matched Cohort study. Clin Infect Dis. 2019;69(3):381–387. DOI:10.1093/cid/ciy916
  • Echeverría‐Esnal D, Sorli L, Prim N, et al. Daptomycin versus glycopeptides for the treatment of enterococcus faecium bacteraemia: a cohort study. Antibiotics. 2021;10(6):716. DOI:10.3390/antibiotics10060716
  • Avery LM, Kuti JL, Weisser M, et al. Pharmacodynamic analysis of daptomycin-treated enterococcal bacteremia: it is time to change the breakpoint. Clin Infect Dis. 2019;68(10):1650–1657. DOI:10.1093/cid/ciy749
  • Satlin MJ, Nicolau DP, Humphries RM, et al. Development of daptomycin susceptibility breakpoints for enterococcus faecium and revision of the breakpoints for other enterococcal species by the clinical and laboratory standards institute. Clin Infect Dis. 2020;70:1240–1246. DOI:10.1093/cid/ciz845
  • Santimaleeworagun W, Changpradub D, Thunyaharn S, et al. Optimizing the dosing regimens of daptomycin based on the susceptible dose-dependent breakpoint against vancomycin-resistant enterococci infection. Antibiotics. 2019;8(4):245. DOI:10.3390/antibiotics8040245
  • Munita JM, Panesso D, Diaz L, et al. Correlation between mutations in liaFSR of enterococcus faecium and MIC of daptomycin: revisiting daptomycin breakpoints. Antimicrob Agents Chemother. 2012;56(8):4354–4359. DOI:10.1128/AAC.00509-12
  • Shukla BS, Shelburne S, Reyes K, et al. Influence of minimum inhibitory concentration in clinical outcomes of enterococcus faecium bacteremia treated with daptomycin: is it time to change the breakpoint? Clin. Infect Dis. 2016;62(12):1514–1520. DOI:10.1093/cid/ciw173
  • Humphries RM, Kraft CS. The new, new daptomycin breakpoint for Enterococcus spp. J Clin Microbiol. 2019;57(7):e00600–19. DOI:10.1128/JCM.00600-19.
  • Jahanbakhsh S, Singh NB, Yim J, et al. Impact of daptomycin dose exposure alone or in combination with β-lactams or rifampin against vancomycin-resistant enterococci in an in vitro biofilm model. Antimicrob Agents Chemother. 2020;64(5):e02074–19. DOI:10.1128/AAC.02074-19
  • Kebriaei R, Rice SA, Singh KV, et al. Influence of inoculum effect on the efficacy of daptomycin monotherapy and in combination with β-lactams against daptomycin-susceptible enterococcus faecium harboring LiaSR substitutions. Antimicrob Agents Chemother. 2018;62(8):e00315–18. DOI:10.1128/AAC.00315-18
  • Kebriaei R, Stamper KC, Singh KV, et al. Mechanistic insights into the differential efficacy of daptomycin plus β-lactam combinations against daptomycin-resistant Enterococcus faecium. J Infect Dis. 2020;222(9):1531–1539. DOI:10.1093/infdis/jiaa319
  • Sakoulas G, Rose W, Nonejuie P, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58(3):1494–1500. DOI:10.1128/AAC.02274-13
  • Chuang YC, Tseng TC, Wang JT, et al. Influence of daptomycin dose and fosfomycin susceptibility on outcome of vancomycin-resistant Enterococcus faecium bloodstream infections treated with daptomycin and fosfomycin combination. J Antimicrob Chemother. 2022;77(5):1436–1443. DOI:10.1093/jac/dkac023
  • Short vs Long of Usual Treatment for Non Complicated Enterococcal Bacteremia - Full Text View - ClinicalTrials.gov [Internet]. [cited 2022 Oct 13]. Available from: https://clinicaltrials.gov/ct2/show/NCT05394298?cond=Enterococcal+Bacteremia&draw=2&rank=1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.