245
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Interaction of zincite, alpha-terpineol, geranyl acetate, linalool, myrcenol, terpinolene, and thymol with virulence factors of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Staphylococcus aureus

ORCID Icon & ORCID Icon
Pages 253-272 | Received 03 Mar 2023, Accepted 06 Jun 2023, Published online: 23 Jul 2023

References

  • Mohammadi MR, Sabati H. When successive viral mutations prevent definitive treatment of COVID-19. Cell Mol Biomed Rep. 2022;2(2):98–108. doi: 10.55705/cmbr.2022.339012.1040
  • Alavi M, Hamblin MR, Mozafari MR, et al. Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products. Cell Mol Biomed Rep. 2022;2(2):87–97. doi: 10.55705/cmbr.2022.338888.1039
  • Ahmadi S. Antibacterial and antifungal activities of medicinal plant species and endophytes. Cell Mol Biomed Rep. 2022;2(2):109–115. doi: 10.55705/cmbr.2022.340532.1042
  • Behzadmehr R, Rezaie-Keikhaie K. Evaluation of active pulmonary tuberculosis among women with diabetes. Cell Mol Biomed Rep. 2022;2(1):56–63. doi: 10.55705/cmbr.2022.336572.1036
  • Rahbar-Karbasdehi E, Rahbar-Karbasdehi F. Clinical challenges of stress cardiomyopathy during coronavirus 2019 epidemic. Cell Mol Biomed Rep. 2021;1(2):88–90. doi: 10.55705/cmbr.2021.145790.1018
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9):2671. doi: 10.3390/molecules26092671
  • Alavi M, Rai M, Martinez F, et al. The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell Mol Biomed Rep. 2022;2(1):10–21. doi: 10.55705/cmbr.2022.147090.1023
  • Abbas-Al-Khafaji ZK, Aubais-Aljelehawy Q. Evaluation of antibiotic resistance and prevalence of multi-antibiotic resistant genes among Acinetobacter baumannii strains isolated from patients admitted to al-Yarmouk hospital. Cell Mol Biomed Rep. 2021;1(2):60–68. doi: 10.55705/cmbr.2021.142761.1015
  • Ye L, Cao Z, Liu X, et al. Noble metal-based nanomaterials as antibacterial agents. J Alloys Compd. 2022;904:164091. doi: 10.1016/j.jallcom.2022.164091
  • Alavi M, Rai M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell Mol Biomed Rep. 2021;1(2):52–59. doi: 10.55705/cmbr.2021.142436.1014
  • Alavi M, Rai M. Chapter 11 - Antibacterial and wound healing activities of micro/nanocarriers based on carboxymethyl and quaternized chitosan derivatives. In: Rai M dos Santos C, editors. Biopolymer-based nano films. Elsevier; 2021. p. 191–201. doi: 10.1016/B978-0-12-823381-8.00009-0
  • Kannan K, Radhika D, Sadasivuni KK, et al. Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci. 2020;281:102178. doi: 10.1016/j.cis.2020.102178
  • Alavi M, Thomas S, Sreedharan M. Modification of silica nanoparticles for antibacterial activities: mechanism of action. Micro Nano Bio Aspects. 2022;1(1):49–58. doi:10.22034/mnba.2022.153448.
  • Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B Biointerfaces. 2019;180:411–428. doi: 10.1016/j.colsurfb.2019.05.008
  • Alavi M, Rai M, Varma RS, et al. Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects. 2022;1(1):18–29. doi:10.22034/mnba.2022.150564.
  • Ashengroph M, Muhtasam Zorab M. Investigating green synthesis of copper nanoparticles using the bacterium pseudomonas grimontii, their characterization, and antibacterial activity. Biol J Microorganism. 2022;11(41):61–79.
  • Alavi M, Hamblin MR, Martinez F, et al. Synergistic combinations of metal, metal oxide, or metalloid nanoparticles plus antibiotics against resistant and non-resistant bacteria. Micro Nano Bio Aspects. 2022;1(1):1–9. doi:10.22034/mnba.2022.149374.
  • Ashengroph M, Meschi Y. Investigating the extracellular synthesis of magnetic nanoparticles by an endophytic bacterium bacillus sp. Strain BR06 under the cell-free extract strategy. Biol J Microorganism. 2022;11(42):1–16.
  • Alavi M, Kowalski R, Capasso R, et al. Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells. Micro Nano Bio Aspects. 2022;1(1):38–48. doi:10.22034/mnba.2022.152629.
  • Ashengroph M, Tozandehjani S. Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochem. 2022;116:197–205. doi: 10.1016/j.procbio.2022.03.014
  • Ahmadi S, Ahmadi G, Ahmadi H. A review on antifungal and antibacterial activities of some medicinal plants. Micro Nano Bio Aspects. 2022;1(1):10–17. doi:10.22034/mnba.2022.150563.
  • Alavi M, Martinez F, Delgado DR, et al. Anticancer and antibacterial activities of embelin: Micro and nano aspects. Micro Nano Bio Aspects. 2022;1(1):30–37. doi:10.22034/mnba.2022.151603.
  • Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199(1):344–370. doi: 10.1007/s12011-020-02138-3
  • Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol. 2023;205(4):128. doi: 10.1007/s00203-023-03467-2
  • Soliman MKY, Salem SS, Abu-Elghait M, et al. Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Appl Biochem Biotechnol. 2023;195(2):1158–1183. doi: 10.1007/s12010-022-04199-7
  • Makabenta JMV, Nabawy A, Li C-H, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nature Rev Microbiol. 2021;19(1):23–36. doi: 10.1038/s41579-020-0420-1
  • Jeong J, Kim S-H, Lee S, et al. Differential contribution of constituent metal ions to the cytotoxic effects of fast-dissolving metal-oxide nanoparticles. Front Pharmacol. 2018;9. doi: 10.3389/fphar.2018.00015.
  • Thambirajoo M, Maarof M, Lokanathan Y, et al. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics. 2021;10(11):1338. doi: 10.3390/antibiotics10111338
  • Daoudi H, Bouafia A, Meneceur S, et al. Secondary metabolite from nigella sativa seeds mediated synthesis of silver oxide nanoparticles for efficient antioxidant and antibacterial activity. J Inorg Organomet Polym Mater. 2022;32(11):4223–4236. doi: 10.1007/s10904-022-02393-y
  • Alavi M, Adulrahman NA, Haleem AA, et al. Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria. Cell Mol Biol. 2022;67(5):151–156. doi: 10.14715/cmb/2021.67.5.21
  • Abdelghany TM, Al-Rajhi AMH, Yahya R, et al. Phytofabrication of zinc oxide nanoparticles with advanced characterization and its antioxidant, anticancer, and antimicrobial activity against pathogenic microorganisms. Biomass Convers Biorefin. 2023;13(1):417–430. doi: 10.1007/s13399-022-03412-1
  • Al-Rajhi AMH, Salem SS, Alharbi AA, et al. Ecofriendly synthesis of silver nanoparticles using Kei-apple (Dovyalis caffra) fruit and their efficacy against cancer cells and clinical pathogenic microorganisms. Arabian J Chem. 2022;15(7):103927. doi: 10.1016/j.arabjc.2022.103927
  • Abdelaziz AM, Salem SS, Khalil AMA, et al. Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. Biometals. 2022;35(3):601–616. doi: 10.1007/s10534-022-00391-8
  • Salem SS. Bio-fabrication of selenium nanoparticles using baker’s yeast extract and its antimicrobial efficacy on food borne pathogens. Appl Biochem Biotechnol. 2022;194(5):1898–1910. doi: 10.1007/s12010-022-03809-8
  • Alavi M, Nokhodchi A. Antimicrobial and wound healing activities of electrospun nanofibers based on functionalized carbohydrates and proteins. Cellul. 2022;29(3):1331–1347. doi: 10.1007/s10570-021-04412-6
  • Rodríguez-Félix F, Graciano-Verdugo AZ, Moreno-Vásquez MJ, et al. Trends in sustainable green synthesis of silver nanoparticles using agri-food waste extracts and their applications in health. J Nanomater. 2022;2022:1–37. doi: 10.1155/2022/8874003
  • Alavi M, Varma RS. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellul. 2021;28(13):8295–8311. doi: 10.1007/s10570-021-04067-3
  • Yang L, Wei Z, Li S, et al. Plant secondary metabolite, daphnetin reduces extracellular polysaccharides production and virulence factors of Ralstonia solanacearum. Pestic Biochem Physiol. 2021;179:104948. doi: 10.1016/j.pestbp.2021.104948
  • León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, et al. The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol. 2020;11. doi: 10.3389/fmicb.2020.01669.
  • Alavi M, Karimi N. Antibacterial, hemoglobin/albumin-interaction, and molecular docking properties of phytogenic AgNPs functionalized by three antibiotics of penicillin, amoxicillin, and tetracycline. Microb Pathog. 2022;164:105427. doi: 10.1016/j.micpath.2022.105427
  • Genji Srinivasulu Y, Mozhi A, Goswami N, et al. Gold nanocluster based nanocomposites for combinatorial antibacterial therapy for eradicating biofilm forming pathogens. Mater Chem Front. 2022;6(6):689–706. doi: 10.1039/D1QM00936B
  • Alavi M, Karimi N, Salimikia I. Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. J Ind Eng Chem. 2019;72:457–473. doi: 10.1016/j.jiec.2019.01.002
  • Alonso B, Fernández-Barat L, Di Domenico EG, et al. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect Dis. 2020;20(1):909. doi: 10.1186/s12879-020-05534-1
  • Sundar S, Thangamani L, Manivel G, et al. Molecular docking, molecular dynamics and MM/PBSA studies of FDA approved drugs for protein kinase a of mycobacterium tuberculosis; application insights of drug repurposing. Inf Med Unlocked. 2019;16:100210. doi: 10.1016/j.imu.2019.100210
  • Everett MJ, Davies DT, Leiris S, et al. Chemical optimization of selective pseudomonas aeruginosa LasB elastase inhibitors and their impact on LasB-Mediated activation of IL-1β in cellular and animal infection models. ACS Infect Dis. 2023;9(2):270–282. doi: 10.1021/acsinfecdis.2c00418
  • Berra L, Schmidt U, Wiener-Kronish J. Relationship between virulence factors and outcome of ventilator-associated pneumonia related to Pseudomonas aeruginosa. Curr Respir Med Rev. 2010;6(1):19–25. doi: 10.2174/157339810790820458
  • Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol. 2012;2. doi: 10.3389/fcimb.2012.00012
  • Shalaby M-A, Dokla EME, Serya RAT, et al. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem. 2020;199:112312. doi: 10.1016/j.ejmech.2020.112312
  • Nagarajan SN, Upadhyay S, Chawla Y, et al. Protein kinase a (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J Biol Chem. 2015;290(15):9626–9645. doi: 10.1074/jbc.M114.611822
  • Gijsbers A, Vinciauskaite V, Siroy A, et al. Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Curr Res Struct Biol. 2021;3:153–164. doi: 10.1016/j.crstbi.2021.06.001
  • Huang D, Bao L. Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J Microbiol Immunol Infect. 2016;49(6):859–865. doi: 10.1016/j.jmii.2014.11.008
  • Duan Q, Xia P, Nandre R, et al. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front Cell Infect Microbiol. 2019;9. doi: 10.3389/fcimb.2019.00292.
  • Ardissino G, Vignati C, Masia C, et al. Bloody diarrhea and Shiga toxin–producing Escherichia coli hemolytic uremic syndrome in children: data from the ItalKid-HUS network. J Paediatr. 2021;237:34–40.e31. doi: 10.1016/j.jpeds.2021.06.048
  • Tian W, Chen C, Lei X, et al. Castp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–W367. doi: 10.1093/nar/gky473
  • Xiong G, Wu Z, Yi J, et al. Admetlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021;49(W1):W5–w14. doi: 10.1093/nar/gkab255
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334
  • Manimaran S, SambathKumar K, Gayathri R, et al. Medicinal plant using ground state stabilization of natural antioxidant curcumin by keto-enol tautomerisation. Nat Prod Bioprospecting. 2018;8(5):369–390. doi: 10.1007/s13659-018-0170-1
  • Bayoumy AM, Ibrahim M, Omar A. Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Opt Quantum Electron. 2020;52(7):346. doi: 10.1007/s11082-020-02467-6
  • Hassanzadeh K, Akhtari K, Esmaeili SS, et al. Encapsulation of Thiotepa and altretamine as neurotoxic anticancer drugs in Cucurbit[n]uril (n=7, 8) nanocapsules: A DFT study. J Theor Comput Chem. 2016;15(7):1650056. doi: 10.1142/S0219633616500565
  • López-Blanco JR, Aliaga JI, Quintana-Ortí ES, et al. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res. 2014;42(Web Server issue):W271–276. doi: 10.1093/nar/gku339
  • Lopéz-Blanco JR, Garzón JI, Chacón P. iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics. 2011;27(20):2843–2850. doi: 10.1093/bioinformatics/btr497
  • Kovacs JA, Chacón P, Abagyan R. Predictions of protein flexibility: first-order measures. Proteins. 2004;56(4):661–668. doi: 10.1002/prot.20151
  • Ghosh P, Bhakta S, Bhattacharya M, et al. A novel multi-epitopic peptide vaccine candidate against helicobacter pylori: in-silico identification, design, cloning and validation through molecular dynamics. Int J Pept Res Ther. 2021;27(2):1149–1166. doi: 10.1007/s10989-020-10157-w
  • Suhre K, Sanejouand Y-H. ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 2004;32(suppl_2):W610–W614. doi: 10.1093/nar/gkh368
  • Wang C-Y, Chen Y-W, Hou C-Y. Antioxidant and antibacterial activity of seven predominant terpenoids. Int J Food Prop. 2019;22(1):230–238. doi: 10.1080/10942912.2019.1582541
  • Sayout A, Ouarhach A, Rabie R, et al. Evaluation of antibacterial activity of Lavandula pedunculata subsp. atlantica (Braun-Blanq.) romo essential oil and selected terpenoids against resistant bacteria strains–structure–activity relationships. Chem Biodivers. 2020;17(1):e1900496. doi: 10.1002/cbdv.201900496
  • Soni R, Sharma G, Jasuja ND. Essential oil yield pattern and antibacterial and insecticidal activities of Trachyspermum ammi and Myristica fragrans. Scientifica (Cairo). 2016;2016:1–7. doi: 10.1155/2016/1428194
  • Mukherji R, Prabhune A. A new class of bacterial quorum sensing antagonists: glycomonoterpenols synthesized using linalool and alpha terpineol. World J Microbiol Biotechnol. 2015;31(6):841–849. doi: 10.1007/s11274-015-1822-5
  • de Araújo ACJ, Freitas PR, dos Santos Barbosa CR, et al. In Vitro and in silico inhibition of staphylococcus aureus efflux pump NorA by α-pinene and limonene. Curr Microbiol. 2021;78(9):3388–3393. doi: 10.1007/s00284-021-02611-9
  • Boyd SE, Livermore DM, Hooper DC, et al. Metallo-β-lactamases: structure, function, epidemiology, treatment options, and the development pipeline. Antimicrob Agents Chemother. 2020;64(10):e00397–00320. doi: 10.1128/AAC.00397-20
  • Vidovic N, Vidovic S. Antimicrobial resistance and food animals: influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics. 2020;9(2):52. doi: 10.3390/antibiotics9020052
  • dos Santos JFS, Tintino SR, de Freitas TS, et al. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis. 2018;57:22–28. doi: 10.1016/j.cimid.2018.03.001
  • Sivakumar S, Smiline Girija AS, Vijayashree Priyadharsini J. Evaluation of the inhibitory effect of caffeic acid and gallic acid on tetR and tetM efflux pumps mediating tetracycline resistance in Streptococcus sp., using computational approach. J King Saud Univ Sci. 2020;32(1):904–909. doi: 10.1016/j.jksus.2019.05.003
  • Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIREs Comput Mol Sci. 2022;12(5):e1601. doi: 10.1002/wcms.1601
  • Politzer P, Murray JS. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc. 2002;108(3):134–142. doi: 10.1007/s00214-002-0363-9
  • Bhattacharjee M, Banerjee M, Mukherjee A. In silico designing of a novel polyvalent multi-subunit peptide vaccine leveraging cross-immunity against human visceral and cutaneous leishmaniasis: an immunoinformatics-based approach. J Mol Model. 2023;29(4):99. doi: 10.1007/s00894-023-05503-w
  • Al-Karmalawy AA, Alnajjar R, Dahab M, et al. Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. Pharm Sci. 2021;27(Covid–19):S109–S121. doi: 10.34172/PS.2021.3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.