632
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Identification of antibiotic consumption targets for the management of Clostridioides difficile infection in hospitals- a threshold logistic modelling approach

ORCID Icon, , , , ORCID Icon, , , & show all
Pages 1125-1134 | Received 05 Jul 2023, Accepted 17 Sep 2023, Published online: 29 Sep 2023

References

  • Balsells E, Shi T, Leese C, et al. Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health. 2019;9(1):010407. doi: 10.7189/jogh.09.010407
  • Robertson C, Pan J, Kavanagh K, et al. Cost burden of Clostridioides difficile infection to the health service: a retrospective cohort study in Scotland. J Hosp Infect. 2020;106(3):554–561. doi: 10.1016/j.jhin.2020.07.019
  • Wiegand PN, Nathwani D, Wilcox MH, et al. Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J Hosp Infect. 2012;81:1–14. doi: 10.1016/j.jhin.2012.02.004
  • Leffler DA, Lamont JT, Longo DL. Clostridium difficile infection. N Engl J Med. 2015;372:1539–1548. doi: 10.1056/NEJMra1403772
  • Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13:206–216. doi: 10.1038/nrgastro.2016.25
  • McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66(7):e1–e48. doi: 10.1093/cid/cix1085
  • Eze P, Balsells E, Kyaw MH, et al. Risk factors for Clostridium difficile infections - an overview of the evidence base and challenges in data synthesis. J Glob Health. 2017;7(1):010417. doi: 10.7189/jogh.07.010417
  • Slimings C, Riley TV. Antibiotics and healthcare facility-associated Clostridioides difficile infection: systematic review and meta-analysis 2020 update. J Antimicrob Chemother. 2021;76:1676–1688. doi: 10.1093/jac/dkab091
  • Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:881–891. doi: 10.1093/jac/dkt477
  • Conlon-Bingham GM, Aldeyab M, Scott M, et al. Effects of antibiotic cycling policy on incidence of healthcare-associated MRSA and Clostridioides difficile infection in secondary healthcare settings. Emerg Infect Dis. 2019;25:52–62. doi: 10.3201/eid2501.180111
  • Levy SB. Balancing the drug-resistance equation. Trends Microbiol. 1994;2(10):341–342. doi: 10.1016/0966-842X(94)90607-6
  • López-Lozano JM, Lawes T, Nebot C, et al. A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nat Microbiol. 2019;4(7):1160–1172. doi: 10.1038/s41564-019-0410-0
  • Lawes T, Lopez-Lozano JM, Nebot CA, et al. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206. doi: 10.1016/S1473-3099(16)30397-8
  • Al-Hashimy ZS, Conway BR, Al-Yaqoobi M, et al. Identifying targets for antibiotic use for the management of carbapenem-resistant Acinetobacterbaumannii (CRAb) in hospitals-A multi-centre nonlinear time-Series study. Antibiotics. 2022;11(6):775. doi: 10.3390/antibiotics11060775
  • Chen S, Li Z, Shi J, et al. A nonlinear time-series analysis to identify the thresholds in relationships between antimicrobial consumption and resistance in a Chinese tertiary hospital. Infect Dis Ther. 2022;11(3):1019–1032. doi: 10.1007/s40121-022-00608-w
  • Hayajneh WA, Al-Azzam S, Yusef D, et al. Identification of thresholds in relationships between specific antibiotic use and carbapenem-resistant Acinetobacterbaumannii (CRAb) incidence rates in hospitalized patients in Jordan. J Antimicrob Chemother. 2021;76(2):524–530. doi: 10.1093/jac/dkaa463
  • Aldeyab MA, Bond SE, Conway BR, et al. Identifying antibiotic use targets for the management of antibiotic resistance using an extended-spectrum β-lactamase-producing Escherichia coli case: a threshold logistic modeling approach. Antibiotics. 2022;11(8):1116. doi: 10.3390/antibiotics11081116
  • Aldeyab MA, Bond SE, Conway BR, et al. A threshold logistic Modelling approach for identifying thresholds between antibiotic use and methicillin-resistant Staphylococcus aureus incidence rates in hospitals. Antibiotics. 2022;11(9):1250. doi: 10.3390/antibiotics11091250
  • WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment 2023. Oslo: Norway; 2022. https://www.whocc.no/atc_ddd_index_and_guidelines/guidelines/
  • WHO Access. Watch, reserve (AWaRe) classification of antibiotics for evaluation and monitoring of use, 2021. Geneva: World Health Organization; 2021. (WHO/MHP/HPS/EML/2021.04).
  • Pei S, Blumberg S, Vega JC, et al. Challenges in forecasting antimicrobial resistance. Emerg Infect Dis. 2023;29(4):679–685. doi: 10.3201/eid2904.221552
  • Aldeyab MA, Lattyak WJ. Challenges in forecasting antimicrobial resistance. Emerg Infect Dis. 2023;29(7):1496. doi: 10.3201/eid2907.230489
  • Zhang S, Palazuelos-Munoz S, Balsells EM, et al. Cost of hospital management of Clostridium difficile infection in United States – a meta-analysis and modelling study. BMC Infect Dis. 2016;16:447. doi: 10.1186/s12879-016-1786-6
  • Guest JF, Keating T, Gould D, et al. Modelling the annual NHS costs and outcomes attributable to healthcare-associated infections in England. BMJ Open. 2020;10(1):e033367. doi: 10.1136/bmjopen-2019-033367
  • Health Protection Agency. English national point prevalence survey on healthcare-associated infections and antimicrobial use, preliminary data, 2011. Available: https://webarchive.nationalarchives.gov.uk/ukgwa/20140714085429/http://www.hpa.org.uk/Publications/InfectiousDiseases/AntimicrobialAndHealthcareAssociatedInfections/1205HCAIEnglishPPSforhcaiandamu2011prelim/
  • Tumbarello M, Spanu T, Di Bidino R, et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother. 2010;54:4085–4091. doi: 10.1128/AAC.00143-10
  • Wang Y, Xiao T, Zhu Y, et al. Economic burden of patients with bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Infect Drug Resist. 2020;13:3583–3592. doi: 10.2147/IDR.S271230
  • Gould IM, Reilly J, Bunyan D, et al. Costs of healthcare-associated methicillin-resistant staphylococcus aureus and its control. Clin Microbiol Infect. 2010;16(12):1721–1728. doi: 10.1111/j.1469-0691.2010.03365.x
  • Filice GA, Nyman JA, Lexau C, et al. Excess costs and utilization associated with methicillin resistance for patients with staphylococcus aureus infection. Infect Control Hosp Epidemiol. 2010;31(4):365–373. doi: 10.1086/651094
  • Aldeyab MA, McElnay JC, Scott MG, et al. Hospital antibiotic use and its relationship to age-adjusted comorbidity and alcohol-based hand rub consumption. Epidemiol Infect. 2014;142:404–408. doi: 10.1017/S0950268813001052
  • Aldeyab MA, McElnay JC, Scott MG, et al. A modified method for measuring antibiotic use in healthcare settings: implications for antibiotic stewardship and benchmarking. J Antimicrob Chemother. 2014;69:1132–1141. doi: 10.1093/jac/dkt458
  • Aldeyab MA, Harbarth S, Vernaz N, et al. The impact of antibiotic use on the incidence and resistance pattern of extended-spectrum beta-lactamase-producing bacteria in primary and secondary healthcare settings. Br J Clin Pharmacol. 2012;74:171–179. doi: 10.1111/j.1365-2125.2011.04161.x