354
Views
0
CrossRef citations to date
0
Altmetric
Review

Host defense mechanisms against Candida auris

&
Pages 1087-1096 | Received 14 May 2023, Accepted 25 Sep 2023, Published online: 30 Sep 2023

References

  • Satoh K, Makimura K, Hasumi Y, et al. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009 Jan;53(1):41–44. doi: 10.1111/j.1348-0421.2008.00083.x
  • Piedrahita CT, Cadnum JL, Jencson AL, et al. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species. Infect Control Hosp Epidemiol. 2017 Sep;38(9):1107–1109. doi: 10.1017/ice.2017.127
  • Chowdhary A, Sharma C, Meis JF, et al. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLOS Pathog. 2017 May;13(5):e1006290. doi: 10.1371/journal.ppat.1006290
  • Control CfD. Tracking Candida Auris Atlanta (GA)2021. Available from: https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html
  • Eyre DW, Sheppard AE, Madder H, et al. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med. 2018 Oct 4;379(14):1322–1331. doi: 10.1056/NEJMoa1714373
  • Control CfD. Antibiotic resistance threats in the United States Atlanta (GA)2019. Available from: https://www.cdc/gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  • Organization WH. WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization; 2022.
  • Mathur P, Hasan F, Singh PK, et al. Five-year profile of candidaemia at an Indian trauma centre: high rates of Candida auris blood stream infections. Mycoses. 2018 Sep;61(9):674–680. doi: 10.1111/myc.12790
  • Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of Multidrug-Resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017 Jan 15;64(2):134–140. doi: 10.1093/cid/ciw691
  • Lamoth F, Kontoyiannis DP. The Candida auris alert: facts and perspectives. J Infect Dis. 2018 Jan 30;217(4):516–520. doi: 10.1093/infdis/jix597
  • Lyman M, Forsberg K, Sexton DJ, et al. Worsening spread of Candida auris in the United States, 2019 to 2021. Ann Intern Med. 2023 Apr;176(4):489–495. doi: 10.7326/M22-3469
  • Chow NA, Gade L, Tsay SV, et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis. 2018 Dec;18(12):1377–1384. doi: 10.1016/S1473-3099(18)30597-8
  • Clancy CJ, Nguyen MH. Emergence of Candida auris: an international call to arms. Clin Infect Dis. 2017 Jan 15;64(2):141–143. doi: 10.1093/cid/ciw696
  • Jeffery-Smith A, Taori SK, Schelenz S, et al. Candida auris: a review of the literature. Clin Microbiol Rev. 2018 Jan;31(1). doi: 10.1128/CMR.00029-17
  • Watkins RR, Gowen R, Lionakis MS, et al. Update on the Pathogenesis, virulence, and treatment of Candida auris. Pathog Immun. 2022;7(2):46–65. doi: 10.20411/pai.v7i2.535
  • Khari A, Biswas B, Gangwar G, et al. Candida auris biofilm: a review on model to mechanism conservation. Expert Rev Anti Infect Ther. 2023 Mar;21(3):295–308. doi: 10.1080/14787210.2023.2179036
  • Proctor DM, Drummond RA, Lionakis MS, et al. One population, multiple lifestyles: commensalism and pathogenesis in the human mycobiome. Cell Host Microbe. 2023 Apr 12;31(4):539–553. doi: 10.1016/j.chom.2023.02.010
  • Proctor DM, Dangana T, Sexton DJ, et al. Integrated genomic, epidemiologic investigation of Candida auris skin colonization in a skilled nursing facility. Nat Med. 2021 Aug;27(8):1401–1409. doi: 10.1038/s41591-021-01383-w
  • Timsit JF, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-Acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA. 2016 Oct 18;316(15):1555–1564. doi: 10.1001/jama.2016.14655
  • Bonassoli LA, Bertoli M, Svidzinski TI. High frequency of Candida parapsilosis on the hands of healthy hosts. J Hosp Infect. 2005 Feb;59(2):159–162. doi: 10.1016/j.jhin.2004.06.033
  • Pappas PG, Lionakis MS, Arendrup MC, et al. Invasive candidiasis. Nat Rev Dis Primers. 2018 May 11;4(1):18026. doi: 10.1038/nrdp.2018.26
  • Rossow J, Ostrowsky B, Adams E, et al. Factors associated with Candida auris colonization and transmission in skilled nursing facilities with ventilator units New York, 2016-2018. Clin Infect Dis. 2021 Jun 1;72(11):e753–e760. doi: 10.1093/cid/ciaa1462
  • Horton MV, Johnson CJ, Kernien JF, et al. Candida auris forms high-burden biofilms in skin Niche conditions and on porcine skin. mSphere. 2020 Jan 22;5(1). doi: 10.1128/mSphere.00910-19
  • Southwick KA, Eleanor H, Greenko J, et al. 2039. New York state 2016–2018: progression from Candida auris colonization to bloodstream infection. OFID. 2018;5(suppl_1):S594–S595. doi: 10.1093/ofid/ofy210.1695
  • Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control. 2016;5(1):35. doi: 10.1186/s13756-016-0132-5
  • Huang X, Hurabielle C, Drummond RA, et al. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe. 2021 Feb 10;29(2):210–221 e6. doi: 10.1016/j.chom.2020.12.002
  • Das D, HogenEsch H, Thangamani S. Intestinal colonization with Candida auris and mucosal immune response in mice treated with cefoperazone oral antibiotic. Front Immunol. 2023;14:1123200. doi: 10.3389/fimmu.2023.1123200
  • Drummond RA, Desai JV, Ricotta EE, et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe. 2022 Jul 13;30(7):1020–1033 e6. doi: 10.1016/j.chom.2022.04.013
  • Fan D, Coughlin LA, Neubauer MM, et al. Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015 Jul;21(7):808–814. doi: 10.1038/nm.3871
  • Koh AY, Kohler JR, Coggshall KT, et al. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLOS Pathog. 2008 Feb 8;4(2):e35. doi: 10.1371/journal.ppat.0040035
  • Pathirana RU, Friedman J, Norris HL, et al. Fluconazole-Resistant Candida auris is susceptible to salivary histatin 5 killing and to intrinsic host defenses. Antimicrob Agents Chemother. 2018 Feb;62(2). doi: 10.1128/AAC.01872-17
  • Conti HR, Baker O, Freeman AF, et al. New mechanism of oral immunity to mucosal candidiasis in hyper-IgE syndrome. Mucosal Immunol. 2011 Jul;4(4):448–455. doi: 10.1038/mi.2011.5
  • Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004 Apr;17(2):255–267. doi: 10.1128/CMR.17.2.255-267.2004
  • Nett JE, Andes DR. Contributions of the biofilm matrix to Candida Pathogenesis. J Fungi (Basel). 2020 Feb 3;6(1):21. doi: 10.3390/jof6010021
  • Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014 Oct 1;4(10):a019729–a019729. doi: 10.1101/cshperspect.a019729
  • Sullivan TP, Eaglstein WH, Davis SC, et al. The pig as a model for human wound healing. Wound Repair Regen. 2001 Mar;9(2):66–76. doi: 10.1046/j.1524-475x.2001.00066.x
  • Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015 Jul;66(1):14–21. doi: 10.1016/j.molimm.2014.10.023
  • Liu Y, Chen JY, Shang HT, et al. Light microscopic, electron microscopic, and immunohistochemical comparison of bama minipig (Sus scrofa domestica) and human skin. Comp Med. 2010 Apr;60(2):142–148.
  • Eix EF, Johnson CJ, Wartman KM, et al. Ex vivo human and porcine skin effectively model Candida auris colonization, differentiating robust and poor fungal colonizers. J Infect Dis. 2022 May 16;225(10):1791–1795. doi: 10.1093/infdis/jiac094
  • Zarnowski R, Sanchez H, Jaromin A, et al. A common vesicle proteome drives fungal biofilm development. Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2211424119. doi: 10.1073/pnas.2211424119
  • Zamith-Miranda D, Heyman HM, Couvillion SP, et al. Comparative molecular and immunoregulatory analysis of extracellular vesicles from Candida albicans and Candida auris. mSystems. 2021 Aug 31;6(4):e0082221. doi: 10.1128/mSystems.00822-21
  • Zarnowski R, Noll A, Chevrette MG, et al. Coordination of fungal biofilm development by extracellular vesicle cargo. Nat Commun. 2021 Oct 29;12(1):6235. doi: 10.1038/s41467-021-26525-z
  • Ghannoum M, Herrada J, McCormick TS, et al. A novel transdermal application for clearing skin colonization by Candida auris. Antimicrob Agents Chemother. 2023 May 1;95(5). doi: 10.1128/AAC.02303-20
  • Tharp B, Zheng R, Bryak G, et al. Role of microbiota in the skin colonization of Candida auris. mSphere. 2023 Feb 21;8(1):e0062322. doi: 10.1128/msphere.00623-22
  • Boisson B, Wang C, Pedergnana V, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013 Oct 17;39(4):676–686. doi: 10.1016/j.immuni.2013.09.002
  • Lionakis MS, Levitz SM. Host control of fungal infections: lessons from basic studies and human cohorts. Annu Rev Immunol. 2018 Apr 26;36(1):157–191. doi: 10.1146/annurev-immunol-042617-053318
  • Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011 Apr 1;332(6025):65–68. doi: 10.1126/science.1200439
  • Levy R, Okada S, Beziat V, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8277–E8285. doi: 10.1073/pnas.1618300114
  • Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009 Feb 16;206(2):299–311. doi: 10.1084/jem.20081463
  • Conti HR, Peterson AC, Brane L, et al. Oral-resident natural Th17 cells and gammadelta T cells control opportunistic Candida albicans infections. J Exp Med. 2014 Sep 22;211(10):2075–2084. doi: 10.1084/jem.20130877
  • Conti HR, Bruno VM, Childs EE, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016 Nov 9;20(5):606–617. doi: 10.1016/j.chom.2016.10.001
  • Ling Y, Cypowyj S, Aytekin C, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015 May 4;212(5):619–631. doi: 10.1084/jem.20141065
  • Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol. 2023 Jan;4:1–20.
  • Kashem SW, Kaplan DH. Skin immunity to Candida albicans. Trends Immunol. 2016 Jul;37(7):440–450. doi: 10.1016/j.it.2016.04.007
  • Aggor FEY, Break TJ, Trevejo-Nunez G, et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol. 2020 Jun 5;5(48). doi: 10.1126/sciimmunol.aba0570
  • Drummond RA, Swamydas M, Oikonomou V, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019 May;20(5):559–570. doi: 10.1038/s41590-019-0377-2
  • Kashem SW, Igyarto BZ, Gerami-Nejad M, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015 Feb 17;42(2):356–366. doi: 10.1016/j.immuni.2015.01.008
  • Break TJ, Oikonomou V, Dutzan N, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021 Jan 15;371(6526). doi: 10.1126/science.aay5731
  • Coggshall K, Farsani T, Ruben B, et al. Keratitis, ichthyosis, and deafness syndrome: a review of infectious and neoplastic complications. J Am Acad Dermatol. 2013 Jul;69(1):127–134. doi: 10.1016/j.jaad.2012.12.965
  • Davidson L, van den Reek J, Bruno M, et al. Risk of candidiasis associated with interleukin-17 inhibitors: a real-world observational study of multiple independent sources. Lancet Reg Health Eur. 2022 Feb;13:100266.
  • Ivanov II, Frutos RL, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008 Oct 16;4(4):337–349. doi: 10.1016/j.chom.2008.09.009
  • Bojang E, Ghuman H, Kumwenda P, et al. Immune sensing of Candida albicans. J Fungi (Basel). 2021 Feb 6;7(2):119. doi: 10.3390/jof7020119
  • Bruno M, Kersten S, Bain JM, et al. Transcriptional and functional insights into the host immune response against the emerging fungal pathogen Candida auris. Nat Microbiol. 2020 Dec;5(12):1516–1531. doi: 10.1038/s41564-020-0780-3
  • Ben-Ami R, Berman J, Novikov A, et al. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis. 2017 Feb;23(1):195–203. doi: 10.3201/eid2302.161486
  • Wang Y, Zou Y, Chen X, et al. Innate immune responses against the fungal pathogen Candida auris. Nat Commun. 2022 Jun 21;13(1):3553. doi: 10.1038/s41467-022-31201-x
  • Xin H, Mohiuddin F, Tran J, et al. Experimental mouse models of disseminated Candida auris infection. mSphere. 2019 Sep 4;4(5). doi: 10.1128/mSphere.00339-19
  • Torres SR, Pichowicz A, Torres-Velez F, et al. Impact of Candida auris infection in a neutropenic murine model. Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01625-19
  • Navarro-Arias MJ, Hernandez-Chavez MJ, Garcia-Carnero LC, et al. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 2019;12: 783–794. 10.2147/IDR.S197531.
  • Marakalala MJ, Vautier S, Potrykus J, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLOS Pathog. 2013;9(4):e1003315. doi: 10.1371/journal.ppat.1003315
  • Kim SH, Iyer KR, Pardeshi L, et al. Genetic analysis of candida auris implicates hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance. MBio. 2019 Jan 29;10(1). doi: 10.1128/mBio.02529-18
  • Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011 Oct 14;11(11):723–737. doi: 10.1038/nri3073
  • Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005 Dec;5(12):953–964. doi: 10.1038/nri1733
  • Ng LG, Liu Z, Kwok I, et al. Origin and heterogeneity of tissue myeloid cells: a focus on GMP-Derived monocytes and neutrophils. Annu Rev Immunol. 2023 Apr 26;41(1):375–404. doi: 10.1146/annurev-immunol-081022-113627
  • Goodridge HS, Shimada T, Wolf AJ, et al. Differential use of CARD9 by dectin-1 in macrophages and dendritic cells. J Immunol. 2009 Jan 15;182(2):1146–1154. doi: 10.4049/jimmunol.182.2.1146
  • Johnson CJ, Davis JM, Huttenlocher A, et al. Emerging fungal pathogen Candida auris evades neutrophil attack. MBio. 2018 Aug 21;9(4). doi: 10.1128/mBio.01403-18
  • Horton MV, Johnson CJ, Zarnowski R, et al. Candida auris cell wall mannosylation contributes to neutrophil evasion through pathways divergent from Candida albicans and Candida glabrata. mSphere. mSphere. 2021 Jun 30;6(3):e0040621. doi: 10.1128/mSphere.00406-21
  • Negoro PE, Xu S, Dagher Z, et al. Spleen tyrosine kinase is a critical regulator of neutrophil responses to Candida species. MBio. 2020 May 12;11(3). doi: 10.1128/mBio.02043-19
  • Suprewicz L, Sklodowski K, Walewska A, et al. Plasma gelsolin enhances phagocytosis of Candida auris by human neutrophils through scavenger receptor class B. Microbiol Spectr. 2023 Feb 21;11(2):e0408222. doi: 10.1128/spectrum.04082-22
  • Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog. 2009 Oct;5(10):e1000639. doi: 10.1371/journal.ppat.1000639
  • KD DJ, Freiwald T, Chauss D, et al. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell. 2023;186(13):1–21. doi: 10.1016/j.cell.2023.04.031
  • Singh S, Barbarino A, Youssef EG, et al. Protective efficacy of anti-Hyr1p monoclonal antibody against systemic candidiasis due to multi-drug-resistant Candida auris. J Fungi (Basel). 2023 Jan 12;9(1):103. doi: 10.3390/jof9010103
  • Singh S, Uppuluri P, Mamouei Z, et al. The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLOS Pathog. 2019 Aug;15(8):e1007460. doi: 10.1371/journal.ppat.1007460
  • Edwards JE Jr., Schwartz MM, Schmidt CS, et al. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis-A phase 2 randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2018 Jun 1;66(12):1928–1936. doi: 10.1093/cid/ciy185
  • Huang X, Hurabielle C, Drummond RA, et al. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe. 2020; 29(2): 210–221. doi: 10.1016/j.chom.2020.12.002
  • Dijksteel GS, Ulrich MMW, Middelkoop E, et al. Review: lessons learned from clinical trials using Antimicrobial peptides (AMPs). Front Microbiol. 2021;12:616979. doi: 10.3389/fmicb.2021.616979
  • de Sousa Mda G, Belda W W Jr., de Sousa SR, et al. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin Infect Dis. 2014 Jun;58(12):1734–1737. doi: 10.1093/cid/ciu168
  • Myles IA, Castillo CR, Barbian KD, et al. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Sci Transl Med. 2020 Sep 9;12(560). doi: 10.1126/scitranslmed.aaz8631
  • Caceres DH, Rivera SM, Armstrong PA, et al. Case-case comparison of candida auris versus other candida species bloodstream infections: results of an outbreak investigation in Colombia. Mycopathologia. 2020 Oct;185(5):917–923. doi: 10.1007/s11046-020-00478-1
  • Pandya N, Cag Y, Pandak N, et al. International multicentre study of Candida auris infections. J Fungi (Basel). 2021 Oct 19;7(10):878. doi: 10.3390/jof7100878
  • Hoenigl M, Seidel D, Sprute R, et al. COVID-19-associated fungal infections. Nat Microbiol. 2022 Aug;7(8):1127–1140. doi: 10.1038/s41564-022-01172-2
  • Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol. 2023 Mar 29;67:101752. doi: 10.1016/j.smim.2023.101752
  • GD SJ, Person T, Curelop K, et al. S. R.; for the VIOLET trial investigators. Efficacy and safety of oteseconazole in recurrent vulvovaginal candidiasis. NEJM Evid. 2022;1(8):1. doi: 10.1056/EVIDoa2100055
  • Thompson GR 3rd, Soriano A, Cornely OA, et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): a multicentre, double-blind, double-dummy, randomised phase 3 trial. Lancet. 2022 Nov 25;401(10370):49–59. doi: 10.1016/S0140-6736(22)02324-8
  • Hoenigl M, Sprute R, Egger M, et al. The antifungal pipeline: fosmanogepix, Ibrexafungerp, Olorofim, opelconazole, and Rezafungin. Drugs. 2021 Oct;81(15):1703–1729. doi: 10.1007/s40265-021-01611-0
  • Trevino-Rangel RDJ, Gonzalez GM, Montoya AM, et al. Recent antifungal pipeline developments against Candida auris: a systematic review. J Fungi (Basel). 2022 Oct 28;8(11):1144. doi: 10.3390/jof8111144
  • Wiederhold NP, Najvar LK, Olivo M, et al. Ibrexafungerp demonstrates in vitro activity against fluconazole-resistant candida auris and in vivo efficacy with delayed initiation of therapy in an experimental model of invasive candidiasis. Antimicrob Agents Chemother. 2021 May 18;65(6). doi: 10.1128/AAC.02694-20
  • Wiederhold NP, Najvar LK, Shaw KJ, et al. Efficacy of delayed therapy with fosmanogepix (APX001) in a murine model of Candida auris invasive candidiasis. Antimicrob Agents Chemother. 2019 Nov;63(11). doi: 10.1128/AAC.01120-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.