200
Views
0
CrossRef citations to date
0
Altmetric
Review

Part 2: Understanding the role of Malassezia spp. in skin disorders: pathogenesis of Malassezia associated skin infections

, , , , , , , & show all
Pages 1245-1257 | Received 18 Aug 2023, Accepted 19 Oct 2023, Published online: 06 Nov 2023

References

  • Theelen B, Cafarchia C, Gaitanis G, et al. Malassezia ecology, pathophysiology, and treatment. Med Mycol. 2018;56(suppl_1):S10–S25. doi: 10.1093/mmy/myx134
  • Guillot J, Bond R. Malassezia yeasts in Veterinary dermatology: an updated overview. Front Cell Infect Microbiol. 2020;10:79. doi: 10.3389/fcimb.2020.00079
  • Chandra SH, Srinivas R, Dawson TL, et al. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front Cell Infect Microbiol. 2021;26:10. doi: 10.3389/fcimb.2020.614446
  • Hobi S, Cafarchia C, Romano V, et al. Malassezia: zoonotic implications, parallels and differences in colonization and disease in humans and animals. J Fungi. 2022;8(7):708. doi: 10.3390/jof8070708
  • Lai X, Cao L, Tan H, et al. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China sea. Isme J. 2007 Dec;1(8):756–762. doi: 10.1038/ismej.2007.51
  • Ianiri G, LeibundGut-Landmann S, Dawson TL Jr. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol. 2022;76:757–782. doi: 10.1146/annurev-micro-040820-010114
  • Saunte DML, Gaitanis G, Hay RJ. Malassezia-associated skin diseases, the use of diagnostics and treatment. Front Cell Infect Microbiol. 2020;10:112. doi: 10.3389/fcimb.2020.00112
  • Rhimi W, Theelen B, Boekhout T, et al. Malassezia spp. Yeasts of Emerging Concern in Fungemia. Front Cell Infect Microbiol. 2020;10:370. doi: 10.3389/fcimb.2020.00370
  • Yang Q, Ouyang J, Pi D, et al. Malassezia in inflammatory bowel disease: accomplice of evoking tumorigenesis. Front Immunol. 2022;13:846469. doi: 10.3389/fimmu.2022.846469
  • Cafarchia C, Gallo S, Romito D, et al. Frequency, body distribution, and population size of Malassezia species in healthy dogs and in dogs with localized cutaneous lesions. J Vet Diagn Invest. 2005;17(4):316–322. doi: 10.1177/104063870501700403
  • Cafarchia C, Gasser RB, Latrofa MS, et al. Genetic variants of Malassezia pachydermatis from canine skin: body distribution and phospholipase activity. FEMS Yeast Res. 2008a;8:451–459. doi: 10.1111/j.1567-1364.2008.00358.x
  • Mozyrska OV, Volosovets OP, Kryvopustov SP, et al. Single nucleotide polymorphism rs4696480 of tlr2 gene associates with severity of atopic dermatitis in children, but not with IgE sensitization to Malassezia. Wiad Lek. 2022;75(5 pt 1):1070–1076. doi: 10.36740/WLek202205104
  • Heilskov S, Deleuran MS, Vestergaard C. Immunosuppressive and immunomodulating therapy for atopic dermatitis in pregnancy: an appraisal of the literature. Dermatol Ther (Heidelb). 2020;10:1215–1228. doi: 10.1007/s13555-020-00457-w
  • Rhimi W, Chebil W, Ugochukwu ICI, et al. Comparison of virulence factors and susceptibility profiles of Malassezia furfur from pityriasis versicolor patients and bloodstream infections of preterm infants. Med Mycol. 2022;61(1):myad003. doi: 10.1093/mmy/myad003
  • Ashbee HR. Update on the genus Malassezia. Med Mycol. 2007;45(4):287–303. doi: 10.1080/13693780701191373
  • Jain C, Das S, Ramachandran VG, et al. Malassezia yeast and cytokine gene polymorphism in atopic dermatitis. J Clin Diagn Res. 2017;11(3):DC01–DC05. doi: 10.7860/JCDR/2017/23948.9474
  • Kantor R, Silverberg JI. Environmental risk factors and their role in the management of atopic dermatitis. Exp Rev Clin Immunol. 2017;13(1):15–26. doi: 10.1080/1744666X.2016.1212660
  • Leigh JH, Park HJ, Chun SM, et al. Association of atopic dermatitis with dyslipidemia in adolescents: a cross-sectional study. Ann Dermatol. 2021;33(5):483–485. doi: 10.5021/ad.2021.33.5.483
  • Lim JJ, Lim YYE, Ng JY, et al. An update on the prevalence, chronicity, and severity of atopic dermatitis and the associated epidemiological risk factors in the Singapore/Malaysia Chinese young adult population: a detailed description of the Singapore/Malaysia cross-sectional genetics Epidemiology study (SMCGES) cohort. World Allerg Org J. 2022;15(12):100722. doi: 10.1016/j.waojou.2022.100722
  • Goh JPZ, Ruchti F, Poh SE, et al. The human pathobiont Malassezia furfur secreted protease Mfsap1 regulates cell dispersal and exacerbates skin inflammation. Proc Natl Acad Sci U S A. 2022;119(49):e2212533119. Epub 2022. doi: 10.1073/pnas.2212533119
  • Li H, Goh BN, Teh WK, et al. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J Invest Dermatol. 2017;138(5):1137–1145. doi: 10.1016/j.jid.2017.11.034
  • Ianiri G, Heitman J, Scheynius A. The skin commensal yeast Malassezia globosa thwarts bacterial biofilms to benefit the host. J Invest Dermatol. 2018;138:1026–1029. doi: 10.1016/j.jid.2018.01.008
  • Mexia N, Koutrakis S, He G, et al. A biomimetic, one-step transformation of simple indolic compounds to Malassezia-related alkaloids with high AhR potency and efficacy. Chem Res Toxicol. 2019;32:2238–2249. doi: 10.1021/acs.chemrestox.9b00270
  • Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR ligands in skin homeostasis and cutaneous inflammation. Cells. 2021;10(11):3176. doi: 10.3390/cells10113176
  • Chai FC, Auret K, Christiansen K, et al. Malignant otitis externa caused by Malassezia sympodialis. Head Neck. 2000;22(1):87–89. doi: 10.1002/(sici)1097-0347(200001)22:1<87:aid-hed13>3.0.co;2-1
  • Latha R, Sasikala R, Muruganandam N. Chronic otomycosis due to Malassezia spp. J Glob Inf Dis. 2010;2(2):189–190. doi: 10.4103/0974-777X.62875
  • Rubenstein RM, Malerich SA. Malassezia (pityrosporum) folliculitis. J Clin Aesthet Dermatol. 2014;7(3):37–41.
  • Shi VY, Leo M, Hassoun L, et al. Role of sebaceous glands in inflammatory dermatoses. J Amer Acad Dermatol. 2015;73(5):856–863. doi: 10.1016/j.jaad.2015.08.015
  • Suzuki C, Hase M, Shimoyama H, et al. Treatment outcomes for Malassezia folliculitis in the dermatology department of a university hospital in Japan. Med Mycol J. 2016;57(3):E63–E66. doi: 10.3314/mmj.16-00003
  • Vlachos C, Henning MAS, Gaitanis G, et al. Critical synthesis of available data in Malassezia folliculitis and a systematic review of treatments. J Eur Acad Dermatol Venereol. 2020;34(8):1672–1683. doi: 10.1111/jdv.16253
  • Malgotra V, Singh H. Malassezia (Pityrosporum) folliculitis masquerading as recalcitrant Acne. Cureus. 2021;13(2):e13534. doi: 10.7759/cureus.13534
  • Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, et al. Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol. 2016;55:494–504. doi: 10.1111/ijd.13116
  • Chebil W, Rhimi W, Haouas N, et al. Virulence factors of Malassezia strains isolated from pityriasis versicolor patients and 1 healthy individuals. J Mycol Med. 2022b;32(2):101246. doi: 10.1016/j.mycmed.2022.101246
  • Giusiano G, Sosa MDLA, Rojas F, et al. Prevalence of Malassezia species in pityriasis versicolor lesions in northeast Argentina. Rev Iberoam Micol. 2010;27(2):71–74. doi: 10.1016/j.riam.2009.12.005
  • Mendez-Tovar LJ. Pathogenesis of dermatophytosis and tinea versicolor. Clin Dermatol. 2010;28(2):185–189. doi: 10.1016/j.clindermatol.2009.12.015
  • Al-Fouzan AS, Yassin AM. Pityriasis versicolor: Histopathological study. Gulf J Dermatol Venereol. 2012;19:35–42.
  • El-Tahlawi SR, Ramadan AH, Shaker OG, et al. Detection of IL-17A and IL-17F gene polymorphism in recurrent and disseminated pityriasis versicolor: a case-control study. Arch Dermatol Res. 2023;315(5):1367–1374. doi: 10.1007/s00403-022-02462-9
  • Rudramurthy SM, Honnavar P, Chakrabarti A, et al. Association of Malassezia species with psoriatic lesions. Mycoses. 2014;57(8):483–488. doi: 10.1111/myc.12186
  • Kamiya K, Kishimoto M, Sugai J, et al. Risk factors for the development of psoriasis. Int J Mol Sci. 2019;20(18):4347. doi: 10.3390/ijms20184347
  • Xhaja A, Shkodrani E, Frangaj S, et al. An epidemiological study on trigger factors and quality of life in psoriatic patients. Mat Socio-Med. 2014;26(3):168–171. doi: 10.5455/msm.2014.26.168-171
  • Amanat M, Salehi M, Rezaei N. Neurological and psychiatric disorders in psoriasis. Rev Neurosci. 2018;29(7):805–813. doi: 10.1515/revneuro-2017-0108
  • Egeberg A, See K, Garrelts A, et al. Epidemiology of psoriasis in hard-to-treat body locations: data from the Danish skin cohort. BMC Dermatol. 2020;20(1):3. doi: 10.1186/s12895-020-00099-7
  • Ennouri M, Bahloul E, Sellami K, et al. Pustular psoriasis of pregnancy: clinical and genetic characteristics in a series of eight patients and review of the literature. Dermatologic Therapy. 2022;35(8):e15593. doi: 10.1111/dth.15593
  • Dessinioti C, Katsambas A. Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol. 2013;31(4):343–351. doi: 10.1016/j.clindermatol.2013.01.001
  • Harada K, Saito M, Sugita T, et al. Malassezia species and their associated skin diseases. J Dermatol. 2015;42(3):250–257. doi: 10.1111/1346-8138.12700
  • Marsella R, De Benedetto A. Atopic dermatitis in animals and people: an update and comparative review. Vet Sci. 2017;4(3):37. doi: 10.3390/vetsci4030037
  • Meason-Smith C, Olivry T, Lawhon SD, et al. Malassezia species dysbiosis in natural and allergen-induced atopic dermatitis in dogs. Med Mycol. 2020;58(6):756–765. doi: 10.1093/mmy/myz118
  • Wikramanayake TC, Hirt P, Almastadi M, et al. Increased IL-17-expressing gammadelta T cells in seborrhoeic dermatitis-like lesions of the Mpzl3 knockout mice. Exp Dermatol. 2018;27:1408–1411. doi: 10.1111/exd.13798
  • Dall’aglio C, Maranesi M, Di Loria A, et al. Effects of obesity on adiponectin system skin expression in dogs: a comparative study. Anim. 2021;11(8):2308. doi: 10.3390/ani11082308
  • Velegraki A, Cafarchia C, Gaitanis G, et al. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLOS Pathog. 2015;11:e1004523. doi: 10.1371/journal.ppat.1004523
  • Nunes Rodrigues TC, Vandenabeele SI. Pilot study of dogs with suppurative and non-suppurative Malassezia otitis: a case series. BMC Vet Res. 2021;17(1):353. doi: 10.1186/s12917-021-03066-7
  • Naik B, Ahmed SM, Laha S, et al. Genetic susceptibility to fungal infections and links to human ancestry. Front Gen. 2021;12:709315. doi: 10.3389/fgene.2021.709315
  • Ashbee HR, Evans EG. Immunology of diseases associated with Malassezia species. Clin Microbiol Rev. 2002;15:21–57. doi: 10.1128/CMR.15.1.21-57.2002
  • Bond R, Morris DO, Guillot J, et al. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol. 2020;31(1):28–74. doi: 10.1111/vde.12809
  • Henshaw EB, Olasode OA. Prevalence of skin infections, infestations, and papular urticaria among adolescents in secondary schools in Calabar, Nigeria. Ghana Med J. 2019;53(4):287–293. doi: 10.4314/gmj.v53i4.6
  • Chebil W, Haouas N, Chaâbane-Banaoues R, et al. Epidemiology of pityriasis versicolor in Tunisia: clinical features and characterization of Malassezia species. J Med Mycol. 2022a;32(2):101246. doi: 10.1016/j.mycmed.2022.101246
  • Fry L, Baker BS, Powles AV, et al. Is chronic plaque psoriasis triggered by microbiota in the skin? Br J Dermatol. 2013;169(1):47–52. doi: 10.1111/bjd.12322
  • Stalhberger T, Simenel C, Clavaud C, et al. Chemical organization of the cell wall polysaccharide core of Malassezia restricta. J Biol Chem. 2014;289(18):12647–12656. doi: 10.1074/jbc.M113.547034
  • Faergemann J. Management of seborrheic dermatitis and pityriasis versicolor. Amer J Clin Dermatol. 2000;1(2):75–80. doi: 10.2165/00128071-200001020-00001
  • Ordeix L, Galeotti F, Scarampella F, et al. Malassezia spp. overgrowth in allergic cats. Vet Dermatol. 2007;18(5):316–323. doi: 10.1111/j.1365-3164.2007.00609.x
  • Laurence M, Benito-León J, Calon F. Malassezia and Parkinson’s Disease. Front Neurol. 2019;10:758. doi: 10.3389/fneur.2019.00758
  • Angiolella L, Leone C, Rojas F, et al. Biofilm, adherence, and hydrophobicity as virulence factors in Malassezia furfur. Med Mycol. 2018;56(1):110–116. doi: 10.1093/mmy/myx014
  • Angiolella L, Rojas F, Mussin J, et al. Biofilm formation, adherence, and hydrophobicity of M. sympodialis, M. globosa, and M. slooffiae from clinical isolates and normal skin. Med Mycol. 2020;58:1162–1168. doi: 10.1093/mmy/myaa017
  • Kurniadi I, Wijaya WH, Timotius KH. Malassezia virulence factors and their role in dermatological disorders. Acta Dermatovenerol. 2022;31(2):65–70. doi: 10.15570/actaapa.2022.8
  • Akaza N, Akamatsu H, Sasaki Y, et al. Malassezia folliculitis is caused by cutaneous resident Malassezia species. Med Mycol. 2009;47(6):618–624. doi: 10.1080/13693780802398026
  • Cafarchia C, Dell’aquila ME, Traversa D, et al. Expression of the micro-opioid receptor on Malassezia pachydermatis and its effect in modulating phospholipase production. Med Mycol. 2010;48(1):73–78. doi: 10.3109/13693780902718347
  • Cafarchia C, Otranto D. Association between phospholipase production by Malassezia pachydermatis and skin lesions. J Clin Microbiol. 2004;42:4868–4869. doi: 10.1128/JCM.42.10.4868-4869.2004
  • Vlachos C, Gaitanis G, Alexopoulos EC, et al. Phospholipase activity after β-endorphin exposure discriminates Malassezia strains isolated from healthy and seborrhoeic dermatitis skin. J Eur Acad Dermatol Venereol. 2013;27(12):1575–1578. doi: 10.1111/j.14683083.2012.04638.x
  • Honnavar P, Chakrabarti A, Prasad GS, et al. β-endorphin enhances the phospholipase activity of the dandruff causing fungi Malassezia globosa and Malassezia restricta. Med Mycol. 2017;55(2):150–154. doi: 10.1093/mmy/myw058
  • Thomas DS, Ingham E, Bojar RA, et al. In vitro modulation of human keratinocyte pro- and anti-inflammatory cytokine production by the capsule of Malassezia species. FEMS Immunol Med Microbiol. 2008;54:203–114. doi: 10.1111/j.1574-695X.2008.00468.x
  • Tee CB, Sei Y, Kajiwara S. Secreted hydrolytic and haemolytic activities of Malassezia clinical strains. Mycopathologia. 2019;184(2):227–238. doi: 10.1007/s11046-019-00330-1
  • Li J, Feng Y, Liu C, et al. Presence of Malassezia hyphae is correlated with pathogenesis of seborrheic dermatitis. Microbiol Spectr. 2022 23;10(1):e0116921. doi: 10.1128/spectrum.01169-21
  • Fernandes KE, Carter DA, Jabra-Rizk MA. Cellular plasticity of pathogenic fungi during infection. PLOS Pathog. 2020;16(6):e1008571. doi: 10.1371/journal.ppat.1008571
  • Brand A. Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol. 2012;2012:1–11. Article ID 517529. doi: https://doi.org/10.1155/2012/517529
  • Ran Y, Yoshiike T, Ogawa H. Lipase of Malassezia furfur: some properties and their relationship to cell growth. J Med Vet Mycol. 1993;31(1):77–85. doi: 10.1080/02681219380000081
  • Kernien JF, Snarr BD, Sheppard DC, et al. The interface between fungal biofilms and innate immunity. Front Immunol. 2018;8:1968. PMID: 29375581; PMCID: PMC5767580. doi: 10.3389/fimmu.2017.01968
  • Figueredo LA, Cafarchia C, Otranto D. Antifungal susceptibility of Malassezia pachydermatis biofilm. Med Mycol. 2013;51(8):863–867. doi: 10.3109/13693786.2013.805440
  • Čonková E, Proškovcová M, Váczi P, et al. In vitro biofilm formation by Malassezia pachydermatis isolates and its susceptibility to Azole Antifungals. J Fungi. 2022;8(11):1209. doi: 10.3390/jof8111209
  • Juntachai W, Aksarakorn K, Malee M, et al. Identification of the haemolytic activity of Malassezia species. Mycoses. 2014;57(3):163–168. doi: 10.1111/myc.12125
  • Celis Ramírez AM, Amézquita A, Cardona Jaramillo JEC, et al. Analysis of Malassezia lipidome disclosed differences among the species and reveals presence of unusual yeast lipids. Front Cell Inf Microb. 2020;10:338. doi: 10.3389/fcimb.2020.00338
  • Teramoto H, Kumeda Y, Yokoigawa K, et al. Genotyping and characterisation of the secretory lipolytic enzymes of Malassezia pachydermatis isolates collected from dogs. Vet Rec Open. 2015;2(2):e000124. doi: 10.1136/vetreco-2015-000124
  • Xu J, Saunders CW, Hu P, et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci. 2007;104:18730–18735. doi: 10.1073/pnas.0706756104
  • Poh SE, Goh JP, Fan C, et al. Identification of Malassezia furfur secreted aspartyl protease 1 (MfSAP1) and its role in extracellular matrix degradation. Front Cell Inf Microbiol. 2020;10:148. doi: 10.3389/fcimb.2020.00148
  • Juntachai W, Kajiwara S. Differential Expression of Extracellular Lipase and Protease Activities of Mycelial and Yeast Forms in Malassezia furfur. Mycopathologia. 2015;180(3):143–151. doi: 10.1007/s11046-015-9900-7
  • Mexia N, Gaitanis G, Velegraki A, et al. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast. Arch Biochem Biophys. 2015;571:16–20. doi: 10.1016/j.abb.2015.02.023
  • Vlachos C, Schulte BM, Magiatis P, et al. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells. Br J Dermatol. 2012;167(3):496–505. doi: 10.1111/j.1365-2133.2012.11014.x
  • Sparber F, LeibundGut-Landmann S. Host Responses to Malassezia spp. in the Mammalian Skin. Front Immunol. 2017;8:1614. doi: 10.3389/fimmu.2017.01614
  • Gaitanis G, Magiatis P, Stathopoulou K, et al. AhR ligands, malassezin, and indolo [3, 2-b] carbazole are selectively produced by Malassezia furfur strains isolated from seborrheic dermatitis. J Investig Dermatol. 2008;128(7):1620–1625. doi: 10.1038/sj.jid.5701252
  • Youngchim S, Nosanchuk JD, Pornsuwan S, et al. The role of L-DOPA on melanization and mycelial production in Malassezia furfur. PLoS One. 2013;8(6):e63764. doi: 10.1371/journal.pone.0063764
  • Park M, Park S, Jung WH. Skin Commensal Fungus Malassezia and Its Lipases. J Microbiol Biotech. 2021;31(5):637–644. doi: 10.4014/jmb.2012.12048
  • Pini G, Faggi E. Extracellular phospholipase activity of Malassezia strains isolated from individuals with and without dermatological disease. Rev Iberoamer Micol. 2011;28(4):179–182. doi: 10.1016/j.riam.2011.05.002
  • Djordjevic JT. Role of phospholipases in fungal fitness, pathogenicity, and drug development - lessons from Cryptococcus neoformans. Front Microbiol. 2010;1:125. doi: 10.3389/fmicb.2010.00125
  • Murakami M, Kudo I. Phospholipase A2. J Biochem. 2002;131(3):285–292. doi: 10.1093/oxfordjournals.jbchem.a003101
  • Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, et al. Secreted fungal aspartic proteases: a review. Rev Iberoamer Mycol. 2016;33(2):76–82. doi: 10.1016/j.riam.2015.10.003
  • Gokulshankar S, Singh AR, Remya V, et al. Is moderation of protease production by Malassezia furfur an essential aspect of its pathogenesis and varied clinical manifestation. Int J Pharm Sci. 2010;6(4):549–551.
  • Später S, Hipler UC, Haustein UF, et al. Generation of reactive oxygen species in vitro by Malassezia yeasts. Der Hautarzt. 2009;60(2):122–127. doi: 10.1007/s00105-008-1684-y
  • André V, Alves PC, Duarte MT. Exploring antibiotics as ligands in metal–organic and hydrogen bonding frameworks: our novel approach towards enhanced antimicrobial activity (mini-review). Inorganica Chimica Acta. 2021;525:120474. doi: 10.1016/j.ica.2021.120474
  • Grice EA, Dawson TL. Host–microbe interactions: Malassezia and human skin. Curr Opin Microbiol. 2017;40:81–87. doi: 10.1016/j.mib.2017.10.024
  • Johansson HJ, Vallhov H, Holm T, et al. Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep. 2018;8(1):9182. doi: 10.1038/s41598-018-27451-9
  • Vallhov H, Johansson C, Veerman RE, et al. Extracellular vesicles released from the skin commensal yeast Malassezia sympodialis activate human primary keratinocytes. Front Cell Infect Microbiol. 2020;10:6. doi: 10.3389/fcimb.2020.00006
  • Pellicciotta M, Rigoni R, Falcone EL, et al. The microbiome and immunodeficiencies: lessons from rare diseases. J Autoimmun. 2019;98:132–148. doi: 10.1016/j.jaut.2019.01.008
  • Sparber F, Ruchti F, LeibundGut-Landmann S. Host Immunity to Malassezia in Health and Dis ease. Front Cellular Infect Microbiol. 2020;10:198. doi: 10.3389/fcimb.2020.00198
  • Glatz M, Buchner M, von Bartenwerffer W, et al. Malassezia spp.-specific immunoglobulin E level is a marker for severity of atopic dermatitis in adults. Acta Derm Venereol. 2015;95:191–196. doi: 10.2340/00015555-1864
  • Chen T, Hill P. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol. 2005;16(1):4–26. doi: 10.1111/j.1365-3164.2005.00424.x
  • Quaresma JAS. Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clin Microbiol Rev. 2019;32(4):e00034–18. doi: 10.1128/CMR.00034-18
  • Ishikawa T, Itoh F, Yoshida S, et al. Identification of distinct ligands for the C-type lectin receptors mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microb. 2013;13:477–488. doi: 10.1016/j.chom.2013.03.008
  • Park HR, Oh JH, Lee YJ, et al. Inflammasome‐mediated inflammation by Malassezia in human keratinocytes: a comparative analysis with different strains. Mycoses. 2021;64(3):292–299. doi: 10.1111/myc.13214
  • Haider M, Dambuza IM, Asamaphan P, et al. The pattern recognition receptors dectin-2, mincle, and FcRgamma impact the dynamics of phagocytosis of Candida Saccharomyces, Malassezia, and mucor species. PLoS ONE. 2019;14:e0220867. doi: 10.1371/journal.pone.0220867
  • Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006;297(7):280–288. doi: 10.1007/s00403-005-0594-4
  • Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol. 2017;8:957. doi: 10.3389/fimmu.2017.00957
  • Metze D, Kersten A, Jurecka W, et al. Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J Invest Dermatol. 1991;96(4):439–445. doi: 10.1111/1523-1747.ep12469908
  • Cunningham AC, Leeming JP, Ingham E, et al. Differentiation of three serovars of Malassezia furfur. J Appl Bacteriol. 1990;68(5):439–446. doi: 10.1111/j.1365-2672.1990.tb02894.x
  • Wu W, Chen F, Liu Z, et al. Microbiota-specific Th17 cells: Yin and Yang in regulation of inflammatory bowel disease. Inflamm Bowel Dis. 2016;6:1473–1482. doi: 10.1097/MIB.0000000000000775
  • Lee YW, Lee SY, Lee Y, et al. Evaluation of expression of lipases and phospholipases of Malassezia restricta in patients with seborrheic dermatitis. Annals Dermatol. 2013;25(3):310–314. doi: 10.5021/ad.2013.25.3.310
  • Sparber F, De Gregorio C, Steckholzer S, et al. The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host Microbe. 2019 Mar 13;25(3):389–403.e6. doi: 10.1016/j.chom.2019.02.002
  • Kozera E, Stewart T, Gill K, et al. Dupilumab‐associated head and neck dermatitis is associated with elevated pretreatment serum Malassezia‐specific IgE: a multicentre, prospective cohort study. Br J Dermatol. 2022;186(6):1050–1052. doi: 10.1111/bjd.21019
  • Fang HL, Hou YD, Zhuang H, et al. The effects of Malassezia in the activation of Interleukin (IL)-23/IL-17 axis in psoriasis. New Microb. 2022;45(2):130–137.
  • Dawson TL Jr. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J Investig Dermatol Symp Proc. 2007;12:15–19. doi: 10.1038/sj.jidsymp.5650049
  • Saunders CW, Scheynius A, Heitman J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLOS Pathog. 2012;8:e1002701. doi: 10.1371/journal.ppat.1002701
  • Lee K, Zhang I, Kyman S, et al. Co-infection of Malassezia sympodialis with bacterial pathobionts Pseudomonas aeruginosa or Staphylococcus aureus leads to distinct sinonasal inflammatory responses in a murine acute sinusitis model. Front Cell Inf Microb. 2020;10:472. doi: 10.3389/fcimb.2020.00472
  • Tanaka A, Cho O, Saito C, et al. Comprehensive pyrosequencing analysis of the bacterial micro biota of the skin of patients with seborrheic dermatitis. Microbiol Immunol. 2016;60:521–526. doi: 10.1111/1348-0421.12398
  • Tamer F, Yuksel ME, Sarifakioglu E, et al. Staphylococcus aureus is the most common bacterial agent of the skin flora of patients with seborrheic dermatitis. Dermatol Pract Concept. 2018 30;8(2):80–84. doi: 10.5826/dpc.0802a04
  • Gallique M, Bouteiller M, Merieau A. The type VI secretion system: a dynamic system for bacterial communication? Front Microbiol. 2017;8:1454. doi: 10.3389/fmicb.2017.01454
  • Cafarchia C, Gallo S, Danesi P, et al. Assessing the relationship between Malassezia and leishmaniasis in dogs with or without skin lesions. Acta Trop. 2008b;107(1):25–29. doi: 10.1016/j.actatropica.2008.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.