370
Views
0
CrossRef citations to date
0
Altmetric
Review

Contemporary pharmacologic treatments of MRSA for hospitalized adults: rationale for vancomycin versus non-vancomycin therapies as first line agents

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1309-1325 | Received 25 May 2023, Accepted 23 Oct 2023, Published online: 02 Nov 2023

References

  • Sakr A, Brégeon F, Mège JL, et al. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front Microbiol. 2018;9:2419. doi: 10.3389/fmicb.2018.02419
  • Tong SY, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
  • Kourtis AP, Hatfield K, Baggs J, et al. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible staphylococcus aureus bloodstream infections — United States. MMWR Morb Mortal Wkly Rep. 2019;68(9):214–219. Ed.^(Eds)
  • Cluff LE, Reynolds RC, Page DL, et al. Staphylococcal bacteremia and altered host resistance. Ann internal med. 1968;69(5):859–873. doi: 10.7326/0003-4819-69-5-859
  • van Hal SJ, Jensen SO, Vaska VL, et al. Predictors of mortality in staphylococcus aureus bacteremia. Clin Microbiol Rev. 2012;25(2):362–386. doi: 10.1128/CMR.05022-11
  • Eriksen KR, Erichsen I. Resistance to methicillin, isoxazolyl penicillins, and cephalothin in staphylococcus aureus. Acta Pathol Microbiol Scand. 1964;62(2):255–275. doi: 10.1111/apm.1964.62.2.255
  • Harkins CP, Pichon B, Doumith M, et al. Methicillin-resistant staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18(1):130. doi: 10.1186/s13059-017-1252-9
  • Katayama Y, Ito T, Hiramatsu K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in staphylococcus aureus. Antimicrob Agents Chemother. 2000;44(6):1549–1555. doi: 10.1128/AAC.44.6.1549-1555.2000
  • Opal SM, Pop-Vicas A. 18 - molecular mechanisms of antibiotic resistance in bacteria. In: Bennett J, Dolin R Blaser M, editors Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Eighth Edition). ed. Philadelphia: W.B. Saunders; 2015. p. 235–251.e233.
  • Souli M, Ruffin F, Choi SH, et al. Changing characteristics of staphylococcus aureus bacteremia: results from a 21-year, prospective, longitudinal study. Clin Infect Dis. 2019;69(11):1868–1877. doi: 10.1093/cid/ciz112
  • Report from the NNIS System A. National Nosocomial Infections Surveillance (NNIS) National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–485. doi: 10.1016/j.ajic.2004.10.001
  • Cosgrove SE, Qi Y, Kaye KS, et al. The impact of methicillin resistance in staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26(2):166–174. doi: 10.1086/502522
  • Antibiotic resistance threats in the U.S. Centers For Disease Control And Prevention (2019). 2019.
  • Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Crit Care. 2017;21(1):211. doi: 10.1186/s13054-017-1801-3
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi: 10.1016/S0140-6736(21)02724-0
  • Evans L, Rhodes A, Alhazzani W, et al. Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):1974–1982. doi: 10.1097/CCM.0000000000005357
  • Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the surgical infection society and the infectious diseases society of America. Clinl Infect Dis. 2010;50(2):133–164. doi: 10.1086/649554
  • Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clinl Infect Dis. 2004;39(9):1267–1284. doi: 10.1086/425368
  • Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant staphylococcus aureus infections in adults and children. Clinl Infect Dis. 2011;52(3):e18–e55. doi: 10.1093/cid/ciq146
  • Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications. Circulation. 2015;132(15):1435–1486. doi: 10.1161/CIR.0000000000000296
  • Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American thoracic society and infectious diseases society of America. Am J Respir Crit Care Med. 2019;200(7):e45–e67. doi: 10.1164/rccm.201908-1581ST
  • Corey GR, Wilcox MH, Talbot GH, et al. CANVAS 1: the first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(Suppl 4):iv41–51. doi: 10.1093/jac/dkq254
  • Falagas ME, Manta KG, Ntziora F, et al. Linezolid for the treatment of patients with endocarditis: a systematic review of the published evidence. J Antimicrob Chemother. 2006;58(2):273–280. doi: 10.1093/jac/dkl219
  • Low DE, File TM Jr., Eckburg PB, et al. FOCUS 2: a randomized, double-blinded, multicentre, Phase III trial of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother. 2011;66(Suppl 3):iii33–44. doi: 10.1093/jac/dkr097
  • McCreary EK, Kullar R, Geriak M, et al. Multicenter cohort of patients with methicillin-resistant staphylococcus aureus bacteremia receiving daptomycin plus ceftaroline compared with other MRSA treatments. Open Forum Infect Dis. 2020;7(1):ofz538. doi: 10.1093/ofid/ofz538
  • Pintado V, Pazos R, Jiménez-Mejías ME, et al. Linezolid for therapy of staphylococcus aureus meningitis: a cohort study of 26 patients. Infect Dis. 2020;52(11):808–815. doi: 10.1080/23744235.2020.1789212
  • Wilcox MH, Corey GR, Talbot GH, et al. CANVAS 2: the second phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(Suppl 4):iv53–iv65. doi: 10.1093/jac/dkq255
  • Griffith RS, Peck FB Jr. Vancomycin, a new antibiotic. III. Preliminary clinical and laboratory studies. Antibiot Annu. 1955;3:619–622.
  • Lechevalier MP, Prauser H, Labeda DP, et al. Two new genera of nocardioform actinomycetes: amycolata gen. nov. And Amycolatopsis gen. nov. Int J Syst Evol Microbiol. 1986;36(1):29–37. doi: 10.1099/00207713-36-1-29
  • Koyama N, Inokoshi J, Tomoda H. Anti-infectious agents against MRSA. Molecules. 2012;18(1):204–224. doi: 10.3390/molecules18010204
  • McDanel JS, Perencevich EN, Diekema DJ, et al. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible staphylococcus aureus bloodstream infections among 122 hospitals. Clin Infect Dis. 2015;61(3):361–367. doi: 10.1093/cid/civ308
  • Schweizer ML, Furuno JP, Harris AD, et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11(1):279. doi: 10.1186/1471-2334-11-279
  • Levine DP. Vancomycin: a history. Clinl Infect Dis. 2006;42(Supplement_1):S5–S12. doi: 10.1086/491709
  • Filippone EJ, Kraft WK, Farber JL. The nephrotoxicity of vancomycin. Clin Pharmacol Ther. 2017;102(3):459–469. doi: 10.1002/cpt.726
  • van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57(2):734–744. doi: 10.1128/AAC.01568-12
  • Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54(5):621–629. doi: 10.1093/cid/cir895
  • Magill SS, O’Leary E, Ray SM, et al. Antimicrobial use in US hospitals: comparison of results from emerging infections program prevalence surveys, 2015 and 2011. Clinl Infect Dis. 2021;72(10):1784–1792. doi: 10.1093/cid/ciaa373
  • Pais GM, Liu J, Zepcan S, et al. Vancomycin-induced kidney injury: animal models of Toxicodynamics, mechanisms of injury, human translation, and potential strategies for prevention. Pharmacother J Human Pharmacol Drug Ther. 2020;40(5):438–454. doi: 10.1002/phar.2388
  • Sokol PP. Mechanism of vancomycin transport in the kidney: studies in rabbit renal brush border and basolateral membrane vesicles. J Pharmacol Exp Ther. 1991;259(3):1283–1287.
  • Nakamura T, Takano M, Yasuhara M, et al. In-vivo clearance study of vancomycin in rats. J Pharm Pharmacol. 1996;48(11):1197–1200. doi: 10.1111/j.2042-7158.1996.tb03920.x
  • Rhodes NJ, Prozialeck WC, Lodise TP, et al. Evaluation of vancomycin exposures associated with elevations in novel urinary biomarkers of acute kidney injury in vancomycin-treated rats. Antimicrob Agents Chemother. 2016;60(10):5742–5751. doi: 10.1128/AAC.00591-16
  • Luque Y, Louis K, Jouanneau C, et al. Vancomycin-associated cast nephropathy. J Am Soc Nephrol. 2017;28(6):1723–1728. doi: 10.1681/ASN.2016080867
  • Shah-Khan F, Scheetz MH, Ghossein C. Biopsy-proven acute tubular necrosis due to vancomycin toxicity. Int J Nephrol. 2011;2011:1–4. doi: 10.4061/2011/436856
  • Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-system Pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98. doi: 10.2146/ajhp080434
  • Vancomycin hydrochloride [package insert]. Hospira Lake Forest IL; 2011. https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/062911s035lbl.pdf
  • Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis. 2007;45(Supplement_3):S191–S195. doi: 10.1086/519470
  • Beach JE, Perrott J, Turgeon RD, et al. Penetration of vancomycin into the cerebrospinal fluid: a systematic review. Clin Pharmacokinet. 2017;56(12):1479–1490. doi: 10.1007/s40262-017-0548-y
  • Cooper GL, Given DB. Vancomycin: a comprehensive review of 30 years of clinical experience. Indianapolis: Park Row Publishers; 1986.
  • Albanèse J, Léone M, Bruguerolle B, et al. Cerebrospinal fluid penetration and pharmacokinetics of vancomycin administered by continuous infusion to mechanically ventilated patients in an intensive care unit. Antimicrob Agents Chemother. 2000;44(5):1356–1358. doi: 10.1128/AAC.44.5.1356-1358.2000
  • Cruciani M, Gatti G, Lazzarini L, et al. Penetration of vancomycin into human lung tissue. J Antimicrob Chemother. 1996;38(5):865–869. doi: 10.1093/jac/38.5.865
  • Lamer C, de Beco V, Soler P, et al. Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother. 1993;37(2):281–286. doi: 10.1128/AAC.37.2.281
  • Scheetz MH, Wunderink RG, Postelnick MJ, et al. Potential impact of vancomycin pulmonary distribution on treatment outcomes in patients with methicillin-resistant staphylococcus aureus pneumonia. Pharmacother J Human Pharmacol Drug Ther. 2006;26(4):539–550. doi: 10.1592/phco.26.4.539
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-system Pharmacists, the infectious Diseases Society of America, the pediatric infectious Diseases Society, and the Society of infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–864. doi: 10.1093/ajhp/zxaa036
  • Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother. 2014;58(1):309–316. doi: 10.1128/AAC.01653-13
  • Pai MP, Neely M, Rodvold KA, et al. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv Drug Deliv Rev. 2014;77:50–57. doi: 10.1016/j.addr.2014.05.016
  • Horey A, Mergenhagen KA, Mattappallil A. The relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother. 2012;46(11):1477–1483. doi: 10.1345/aph.1R158
  • Lodise TP, Patel N, Lomaestro BM, et al. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–514. doi: 10.1086/600884
  • O’Donnell JN, Rhodes NJ, Miglis CM, et al. Dose, duration, and animal sex predict vancomycin-associated acute kidney injury in preclinical studies. Int J Antimicrob Agents. 2018;51(2):239–243. doi: 10.1016/j.ijantimicag.2017.08.012
  • Cano EL, Haque NZ, Welch VL, et al. Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP database. Clin Ther. 2012;34(1):149–157. doi: 10.1016/j.clinthera.2011.12.013
  • Barriere SL, Stryjewski ME, Corey GR, et al. Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to staphylococcus aureus: a retrospective, post hoc, subgroup analysis of the phase 3 ATTAIN studies. BMC Infect Dis. 2014;14(1):183. doi: 10.1186/1471-2334-14-183
  • Aljefri DM, Avedissian SN, Rhodes NJ, et al. Vancomycin area under the curve and acute kidney injury: a meta-analysis. Clin Infect Dis. 2019;69(11):1881–1887. doi: 10.1093/cid/ciz051
  • Liu J, Tong SYC, Davis JS, et al. Vancomycin exposure and acute kidney injury outcome: a snapshot from the CAMERA2 study. Open Forum Infect Dis. 2020;7(12):ofaa538. doi: 10.1093/ofid/ofaa538
  • Lodise TP, Scheetz M, Carreno JJ, et al. Associations between vancomycin exposure and acute kidney injury within the recommended area under the curve therapeutic exposure range among patients with methicillin-resistant staphylococcus aureus bloodstream infections. Open Forum Infect Dis. 2022;9(2):ofab651. doi: 10.1093/ofid/ofab651
  • Lodise TP, Rosenkranz SL, Finnemeyer M, et al. The Emperor’s new clothes: PRospective observational evaluation of the association between initial VancomycIn exposure and failure rates among ADult HospitalizEd patients with methicillin-resistant staphylococcus aureus bloodstream infections (PROVIDE). Clin Infect Dis. 2020;70(8):1536–1545. doi: 10.1093/cid/ciz460
  • Neely MN, Kato L, Youn G, et al. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62(2). doi: 10.1128/AAC.02042-17
  • Brown J, Brown K, Forrest A. Vancomycin AUC24/MIC ratio in patients with complicated bacteremia and infective endocarditis due to methicillin-resistant staphylococcus aureus and its association with attributable mortality during hospitalization. Antimicrob Agents Chemother. 2012;56(2):634–638. doi: 10.1128/AAC.05609-11
  • Holmes NE, Turnidge JD, Munckhof WJ, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57(4):1654–1663. doi: 10.1128/AAC.01485-12
  • Gawronski KM, Goff DA, Brown J, et al. A stewardship program’s retrospective evaluation of vancomycin AUC24/MIC and time to microbiological clearance in patients with methicillin-resistant staphylococcus aureus bacteremia and osteomyelitis. Clin Ther. 2013;35(6):772–779. doi: 10.1016/j.clinthera.2013.05.008
  • Jung Y, Song KH, Cho J, et al. Area under the concentration–time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant staphylococcus aureus bacteraemia. Int J Antimicrob Agents. 2014;43(2):179–183. doi: 10.1016/j.ijantimicag.2013.10.017
  • Lodise TP, Drusano GL, Zasowski E, et al. Vancomycin exposure in patients with methicillin-resistant staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis. 2014;59(5):666–675. doi: 10.1093/cid/ciu398
  • Tong SYC, Lye DC, Yahav D, et al. Effect of vancomycin or daptomycin with vs without an antistaphylococcal β-lactam on mortality, bacteremia, relapse, or treatment failure in patients with MRSA bacteremia: a randomized clinical trial. JAMA. 2020;323(6):527–537. doi: 10.1001/jama.2020.0103
  • Kollef MH. Limitations of vancomycin in the management of resistant staphylococcal infections. Clin Infect Dis. 2007;45(Suppl 3):S191–195. doi: 10.1086/519470
  • LaPlante KL, Rybak MJ. Impact of high-inoculum staphylococcus aureus on the activities of nafcillin, vancomycin, linezolid, and daptomycin, alone and in combination with gentamicin, in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2004;48(12):4665–4672. doi: 10.1128/AAC.48.12.4665-4672.2004
  • Kullar R, McKinnell JA, Sakoulas G. Avoiding the perfect storm: the biologic and clinical case for reevaluating the 7-day expectation for methicillin-resistant staphylococcus aureus bacteremia before switching therapy. Clin Infect Dis. 2014;59(10):1455–1461. doi: 10.1093/cid/ciu583
  • Kuehl R, Morata L, Boeing C, et al. Defining persistent staphylococcus aureus bacteraemia: secondary analysis of a prospective cohort study. Lancet Infect Dis. 2020;20(12):1409–1417. doi: 10.1016/S1473-3099(20)30447-3
  • Minejima E, Mai N, Bui N, et al. Defining the breakpoint duration of staphylococcus aureus bacteremia predictive of poor outcomes. Clin Infect Dis. 2020;70(4):566–573. doi: 10.1093/cid/ciz257
  • Casapao AM, Lodise TP, Davis SL, et al. Association between vancomycin day 1 exposure profile and outcomes among patients with methicillin-resistant staphylococcus aureus infective endocarditis. Antimicrob Agents Chemother. 2015;59(6):2978–2985. doi: 10.1128/AAC.03970-14
  • Ford CW, Zurenko GE, Barbachyn MR. The discovery of linezolid, the first oxazolidinone antibacterial agent. Curr Drug Targets Infect Disord. 2001;1(2):181–199. doi: 10.2174/1568005014606099
  • Linezolid [package insert]. (NY) NY: Pfizer; 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021130s032,021131s026,021132s031lbl.pdf
  • Brickner SJ. 8.13 - Zyvox. In: Taylor J Triggle D, editors Comprehensive medicinal chemistry II. Oxford: Elsevier; 2007. p. 157–171.
  • Diekema DJ, Jones RN. Oxazolidinones. Drugs. 2000;59(1):7–16. doi: 10.2165/00003495-200059010-00002
  • Martin J, Herberg J, Slatter J, et al. Although a novel microtiter-plate assay demonstrates that linezolid (PNU-100766) is a weak, competitive (reversible) inhibitor of human monoamine oxidase (MAO A), no clinical evidence of MAO a inhibition in clinical trials has been observed. In: 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA; 1998.
  • Hendershot PE, Antal EJ, Welshman IR, et al. Linezolid: Pharmacokinetic and Pharmacodynamic Evaluation of Coadministration with Pseudoephedrine HCl, Phenylpropanolamine HCl, and Dextromethorphan HBr. J Clin Pharmacol. 2001;41(5):563–572. doi: 10.1177/00912700122010302
  • Bai AD, McKenna S, Wise H, et al. Association of linezolid with risk of serotonin syndrome in patients receiving antidepressants. JAMA Netw Open. 2022;5(12):e2247426–e2247426. doi: 10.1001/jamanetworkopen.2022.47426
  • Gerson SL, Kaplan SL, Bruss JB, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46(8):2723–2726. doi: 10.1128/AAC.46.8.2723-2726.2002
  • Green SL, Maddox JC, Huttenbach ED. Linezolid and reversible myelosuppression. J Am Med Assoc. 2001;285(10):1291. doi: 10.1001/jama.285.10.1291
  • Attassi K, Hershberger E, Alam R, et al. Thrombocytopenia associated with linezolid therapy. Clinl Infect Dis. 2002;34(5):695–698. doi: 10.1086/338403
  • Lima LS, Brito CA, Mattos K, et al. A retrospective cohort study to screen linezolid-induced thrombocytopenia in adult patients hospitalized in the Midwestern Region of Brazil. Hematol Transfus Cell Ther. 2020;42(3):230–237. doi: 10.1016/j.htct.2019.07.004
  • Choi GW, Lee J-Y, Chang MJ, et al. Risk factors for linezolid-induced thrombocytopenia in patients without haemato-oncologic diseases. Basic Clin Pharmacol Toxicol. 2019;124(2):228–234. doi: 10.1111/bcpt.13123
  • Wicha SG, Mair A, Chiriac U, et al. Population pharmacokinetics and toxicodynamics of continuously infused linezolid in critically ill patients. Int J Antimicrob Agents. 2022;59(5):106572. doi: 10.1016/j.ijantimicag.2022.106572
  • Pea F, Viale P, Cojutti P, et al. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67(8):2034–2042. doi: 10.1093/jac/dks153
  • Lau C, Marriott D, Bui J, et al. Linezolid monitoring to MInimise toxicity (LIMMIT1): a multicentre retrospective review of patients receiving linezolid therapy and the impact of therapeutic drug monitoring. Int J Antimicrob Agents. 2023;61(5):106783. doi: 10.1016/j.ijantimicag.2023.106783
  • Stalker DJ, Jungbluth GL. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet. 2003;42(13):1129–1140. doi: 10.2165/00003088-200342130-00004
  • Welshman IR, Sisson TA, Jungbluth GL, et al. Linezolid absolute bioavailability and the effect of food on oral bioavailability. Biopharm Drug Dispos. 2001;22(3):91–97. doi: 10.1002/bdd.255
  • Boselli E, Breilh D, Rimmelé T, et al. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia. Crit Care Med. 2005;33(7):1529–1533. doi: 10.1097/01.CCM.0000168206.59873.80
  • Conte JE Jr., Golden JA, Kipps J, et al. Intrapulmonary pharmacokinetics of linezolid. Antimicrob Agents Chemother. 2002;46(5):1475–1480. doi: 10.1128/AAC.46.5.1475-1480.2002
  • Honeybourne D, Tobin C, Jevons G, et al. Intrapulmonary penetration of linezolid. J Antimicrob Chemother. 2003;51(6):1431–1434. doi: 10.1093/jac/dkg262
  • Myrianthefs P, Markantonis SL, Vlachos K, et al. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Antimicrob Agents Chemother. 2006;50(12):3971–3976. doi: 10.1128/AAC.00051-06
  • Tsona A, Metallidis S, Foroglou N, et al. Linezolid penetration into cerebrospinal fluid and brain tissue. J Chemother. 2010;22(1):17–19. doi: 10.1179/joc.2010.22.1.17
  • Dryden MS. Linezolid pharmacokinetics and pharmacodynamics in clinical treatment. J Antimicrob Chemother. 2011;66(suppl_4):iv7–iv15. doi: 10.1093/jac/dkr072
  • Rybak MJ, Cappelletty DM, Moldovan T, et al. Comparative in vitro activities and postantibiotic effects of the oxazolidinone compounds eperezolid (PNU-100592) and linezolid (PNU-100766) versus vancomycin against Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Antimicrob Agents Chemother. 1998;42(3):721–724. doi: 10.1128/AAC.42.3.721
  • Andes D, van Ogtrop ML, Peng J, et al. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother. 2002;46(11):3484–3489. doi: 10.1128/AAC.46.11.3484-3489.2002
  • Jacqueline C, Batard E, Perez L, et al. In vivo efficacy of continuous infusion versus intermittent dosing of linezolid compared to vancomycin in a methicillin-resistant staphylococcus aureus rabbit endocarditis model. Antimicrob Agents Chemother. 2002;46(12):3706–3711. doi: 10.1128/AAC.46.12.3706-3711.2002
  • Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–1423. doi: 10.2165/00003088-200342150-00007
  • Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious Diseases Society of America and the American Thoracic Society. Clinl Infect Dis. 2016;63(5):e61–e111. doi: 10.1093/cid/ciw353
  • Kato H, Hagihara M, Asai N, et al. Meta-analysis of vancomycin versus linezolid in pneumonia with proven methicillin-resistant staphylococcus aureus. J Glob Antimicrob Resist. 2021;24:98–105. doi: 10.1016/j.jgar.2020.12.009
  • Kalil AC, Klompas M, Haynatzki G, et al. Treatment of hospital-acquired pneumonia with linezolid or vancomycin: a systematic review and meta-analysis. BMJ Open. 2013;3(10):e003912. doi: 10.1136/bmjopen-2013-003912
  • Wang Y, Zou Y, Xie J, et al. Linezolid versus vancomycin for the treatment of suspected methicillin-resistant staphylococcus aureus nosocomial pneumonia: a systematic review employing meta-analysis. Eur J Clin Pharmacol. 2015;71(1):107–115. doi: 10.1007/s00228-014-1775-x
  • Jiang H, Tang RN, Wang J. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: meta-analysis of randomised controlled trials. Eur J Clin Microbiol Infect Dis. 2013;32(9):1121–1128. doi: 10.1007/s10096-013-1867-z
  • Wu C, Zhang X, Xie J, et al. Pharmacokinetic/Pharmacodynamic parameters of linezolid in the epithelial lining fluid of patients with sepsis. J Clin Pharmacol. 2022;62(7):891–897. doi: 10.1002/jcph.2031
  • Viale P, Pagani L, Cristini F, et al. Linezolid for the treatment of central nervous system infections in neurosurgical patients. Scand J Infect Dis. 2002;34(6):456–459. doi: 10.1080/00365540110080467
  • Kessler AT, Kourtis AP. Treatment of meningitis caused by methicillin-resistant staphylococcus aureus with linezolid. Infection. 2007;35(4):271–274. doi: 10.1007/s15010-007-6211-z
  • Kallweit U, Harzheim M, Marklein G, et al. Successful treatment of methicillin-resistant staphylococcus aureus meningitis using linezolid without removal of intrathecal infusion pump. Case report. J Neurosurg. 2007;107(3):651–653. doi: 10.3171/JNS-07/09/0651
  • Saito N, Aoki K, Sakurai T, et al. Linezolid treatment for intracranial abscesses caused by methicillin-resistant staphylococcus aureus–two case reports. Neurol Med Chir (Tokyo). 2010;50(6):515–517. doi: 10.2176/nmc.50.515
  • Rebai L, Fitouhi N, Daghmouri MA, et al. Linezolid for the treatment of postneurosurgical infection caused by methicillin-resistant staphylococcus. Surg Neurol Int. 2019;10:215. doi: 10.25259/SNI_455_2019
  • Chen HA, Yang CJ, Tsai MS, et al. Linezolid as salvage therapy for central nervous system infections due to methicillin-resistant staphylococcus aureus at two medical centers in Taiwan. J Microbiol Immunol Infect. 2020;53(6):909–915. doi: 10.1016/j.jmii.2020.08.004
  • Sipahi OR, Bardak-Ozcem S, Turhan T, et al. Vancomycin versus linezolid in the treatment of methicillin-resistant staphylococcus aureus meningitis. Surg Infect (Larchmt). 2013;14(4):357–362. doi: 10.1089/sur.2012.091
  • Stevens DL, Herr D, Lampiris H, et al. Linezolid versus vancomycin for the treatment of methicillin-resistant staphylococcus aureus infections. Clin Infect Dis. 2002;34(11):1481–1490. doi: 10.1086/340353
  • McCollum M, Sorensen SV, Liu LZ. A comparison of costs and hospital length of stay associated with intravenous/oral linezolid or intravenous vancomycin treatment of complicated skin and soft-tissue infections caused by suspected or confirmed methicillin-resistant staphylococcus aureus in elderly US patients. Clin Ther. 2007;29(3):469–477. doi: 10.1016/s0149-2918(07)80085-3
  • Ruiz ME, Guerrero IC, Tuazon CU. Endocarditis caused by methicillin-resistant staphylococcus aureus: treatment failure with Linezolid. Clinl Infect Dis. 2002;35(8):1018–1020. doi: 10.1086/342698
  • Muñoz P, De la Villa S, Martínez-Sellés M, et al. Linezolid for infective endocarditis: a structured approach based on a national database experience. Medicine (Baltimore). 2021;100(51):e27597. doi: 10.1097/MD.0000000000027597
  • Tascini C, Bongiorni MG, Doria R, et al. Linezolid for endocarditis: a case series of 14 patients. J Antimicrob Chemother. 2011;66(3):679–682. doi: 10.1093/jac/dkq506
  • Tally FP, DeBruin MF. Development of daptomycin for gram-positive infections. J Antimicrob Chemother. 2000;46(4):523–526. doi: 10.1093/jac/46.4.523
  • Allen NE, Alborn WE, Hobbs JN. Inhibition of membrane potential-dependent amino acid transport by daptomycin. Antimicrob Agents Chemother. 1991;35(12):2639–2642. doi: 10.1128/AAC.35.12.2639
  • Straus SK, Hancock REW. Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta - Biomembr. 2006;1758(9):1215–1223. doi: 10.1016/j.bbamem.2006.02.009
  • Fuchs PC, Barry AL, Brown SD. Daptomycin susceptibility tests: interpretive criteria, quality control, and effect of calcium on in vitro tests. Diagn Microbiol Infect Dis. 2000;38(1):51–58. doi: 10.1016/S0732-8893(00)00164-4
  • Streit JM, Jones RN, Sader HS. Daptomycin activity and spectrum: a worldwide sample of 6737 clinical gram-positive organisms. J Antimicrob Chemother. 2004;53(4):669–674. doi: 10.1093/jac/dkh143
  • Wise R, Andrews JM, Ashby JP. Activity of daptomycin against gram-positive pathogens: a comparison with other agents and the determination of a tentative breakpoint. J Antimicrob Chemother. 2001;48(4):563–567. doi: 10.1093/jac/48.4.563
  • Fuchs PC, Barry AL, Brown SD. In vitro bactericidal activity of daptomycin against staphylococci. J Antimicrob Chemother. 2002;49(3):467–470. doi: 10.1093/jac/49.3.467
  • Daptomycin [package insert]. Merck Rahway NJ; 2015. https://www.merck.com/product/usa/pi_circulars/c/cubicin/cubicin_pi.pdf
  • Dvorchik BH, Brazier D, DeBruin MF, et al. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob Agents Chemother. 2003;47(4):1318–1323. doi: 10.1128/AAC.47.4.1318-1323.2003
  • He W, Zhang Y, Chen H, et al. Efficacy and safety of daptomycin for the treatment of infectious disease: a meta-analysis based on randomized controlled trials. J Antimicrob Chemother. 2014;69(12):3181–3189. doi: 10.1093/jac/dku277
  • Arbeit RD, Maki D, Tally FP, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clinl Infect Dis. 2004;38(12):1673–1681. doi: 10.1086/420818
  • Bhavnani SM, Ambrose PG, Hammel JP, et al. Evaluation of daptomycin exposure and efficacy and safety endpoints to support risk-versus-benefit considerations. Antimicrob Agents Chemother. 2015;60(3):1600–1607. doi: 10.1128/AAC.02967-15
  • Byren I, Rege S, Campanaro E, et al. Randomized controlled trial of the safety and efficacy of daptomycin versus standard-of-care therapy for management of patients with osteomyelitis associated with prosthetic devices undergoing two-stage revision arthroplasty. Antimicrob Agents Chemother. 2012;56(11):5626–5632. doi: 10.1128/AAC.00038-12
  • Katz DE, Lindfield KC, Steenbergen JN, et al. A pilot study of high-dose short duration daptomycin for the treatment of patients with complicated skin and skin structure infections caused by gram-positive bacteria. Int J Clin Pract. 2008;62(9):1455–1464. doi: 10.1111/j.1742-1241.2008.01854.x
  • Fowler VG Jr., Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by staphylococcus aureus. N Engl J Med. 2006;355(7):653–665. doi: 10.1056/NEJMoa053783
  • Woodworth JR, Nyhart EH Jr., Brier GL, et al. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother. 1992;36(2):318–325. doi: 10.1128/AAC.36.2.318
  • Vilay AM, Grio M, Depestel DD, et al. Daptomycin pharmacokinetics in critically ill patients receiving continuous venovenous hemodialysis. Crit Care Med. 2011;39(1):19–25. doi: 10.1097/CCM.0b013e3181fa36fb
  • Piva S, Di Paolo A, Galeotti L, et al. Daptomycin plasma and CSF levels in patients with healthcare-associated meningitis. Neurocrit Care. 2019;31(1):116–124. doi: 10.1007/s12028-018-0657-y
  • Silverman JA, Mortin LI, VanPraagh ADG, et al. Inhibition of daptomycin by pulmonary surfactant: In Vitro modeling and clinical impact. J Infect Dis. 2005;191(12):2149–2152. doi: 10.1086/430352
  • Hanberger H, Nilsson LE, Maller R, et al. Pharmacodynamics of daptomycin and vancomycin on Enterococcus faecalis and staphylococcus aureus demonstrated by studies of initial killing and postantibiotic effect and influence of Ca2+ and albumin on these drugs. Antimicrob Agents Chemother. 1991;35(9):1710–1716. doi: 10.1128/AAC.35.9.1710
  • Bush LM, Boscia JA, Wendeler M, et al. In vitro postantibiotic effect of daptomycin (LY146032) against Enterococcus faecalis and methicillin-susceptible and methicillin-resistant staphylococcus aureus strains. Antimicrob Agents Chemother. 1989;33(8):1198–1200. doi: 10.1128/AAC.33.8.1198
  • D’Avolio A, Pensi D, Baietto L, et al. Daptomycin pharmacokinetics and pharmacodynamics in septic and critically ill patients. Drugs. 2016;76(12):1161–1174. doi: 10.1007/s40265-016-0610-3
  • Butterfield JM, Mueller BA, Patel N, et al. Daptomycin pharmacokinetics and pharmacodynamics in a pooled sample of patients receiving thrice-weekly hemodialysis. Antimicrob Agents Chemother. 2013;57(2):864–872. doi: 10.1128/AAC.02000-12
  • Grégoire N, Marchand S, Ferrandière M, et al. Population pharmacokinetics of daptomycin in critically ill patients with various degrees of renal impairment. J Antimicrob Chemother. 2019;74(1):117–125. doi: 10.1093/jac/dky374
  • Falcone M, Russo A, Venditti M, et al. Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant staphylococcus aureus bacteremia. Clinl Infect Dis. 2013;57(11):1568–1576. doi: 10.1093/cid/cit582
  • Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48(1):63–68. doi: 10.1128/AAC.48.1.63-68.2004
  • Aikawa N, Kusachi S, Mikamo H, et al. Efficacy and safety of intravenous daptomycin in Japanese patients with skin and soft tissue infections. J Infect Chemother. 2013;19(3):447–455. doi: 10.1007/s10156-012-0501-9
  • Quist SR, Fierlbeck G, Seaton RA, et al. Comparative randomised clinical trial against glycopeptides supports the use of daptomycin as first-line treatment of complicated skin and soft-tissue infections. Int J Antimicrob Agents. 2012;39(1):90–91. doi: 10.1016/j.ijantimicag.2011.08.007
  • Pertel PE, Eisenstein BI, Link AS, et al. The efficacy and safety of daptomycin vs. vancomycin for the treatment of cellulitis and erysipelas. Int J Clin Pract. 2009;63(3):368–375. doi: 10.1111/j.1742-1241.2008.01988.x
  • Konychev A, Heep M, Moritz RKC, et al. Safety and efficacy of daptomycin as first-line treatment for complicated skin and soft tissue infections in elderly patients: an Open-label, multicentre, randomized phase IIIb trial. Drugs Aging. 2013;30(10):829–836. doi: 10.1007/s40266-013-0114-8
  • Murray KP, Zhao JJ, Davis SL, et al. Early use of daptomycin versus vancomycin for methicillin-resistant staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: a matched cohort study. Clin Infect Dis. 2013;56(11):1562–1569. doi: 10.1093/cid/cit112
  • Claeys KC, Zasowski EJ, Casapao AM, et al. Daptomycin improves outcomes regardless of vancomycin MIC in a propensity-matched analysis of methicillin-resistant staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother. 2016;60(10):5841–5848. doi: 10.1128/AAC.00227-16
  • Maraolo AE, Giaccone A, Gentile I, et al. Daptomycin versus vancomycin for the treatment of methicillin-resistant staphylococcus aureus bloodstream infection with or without endocarditis: a systematic review and meta-analysis. Antibiotics. 2021;10(8):1014. doi: 10.3390/antibiotics10081014
  • Cojutti PG, Candoni A, Ramos-Martin V, et al. Population pharmacokinetics and dosing considerations for the use of daptomycin in adult patients with haematological malignancies. J Antimicrob Chemother. 2017;72(8):2342–2350. doi: 10.1093/jac/dkx140
  • Benvenuto M, Benziger DP, Yankelev S, et al. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50(10):3245–3249. doi: 10.1128/AAC.00247-06
  • Moise PA, Hershberger E, Amodio-Groton MI, et al. Safety and clinical outcomes when utilizing high-dose (≥8 mg/kg) daptomycin therapy. Ann Pharmacother. 2009;43(7–8):1211–1219. doi: 10.1345/aph.1M085
  • Rose WE, Leonard SN, Sakoulas G, et al. Daptomycin activity against staphylococcus aureus following vancomycin exposure in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2008;52(3):831–836. doi: 10.1128/AAC.00869-07
  • Rose WE, Leonard SN, Rybak MJ. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2008;52(9):3061–3067. doi: 10.1128/AAC.00102-08
  • Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant staphylococcus aureus bacteremia. Clin Ther. 2014;36(10):1303–1316. doi: 10.1016/j.clinthera.2014.09.005
  • Dhand A, Sakoulas G. Reduced vancomycin susceptibility among clinical staphylococcus aureus isolates (‘the MIC creep’): implications for therapy. F1000 Med Rep. 2012;4(4). doi: 10.3410/M4-4
  • Jorgensen SCJ, Zasowski EJ, Trinh TD, et al. Daptomycin plus β-lactam combination therapy for methicillin-resistant staphylococcus aureus bloodstream infections: a retrospective, comparative cohort study. Clinl Infect Dis. 2020;71(1):1–10. doi: 10.1093/cid/ciz746
  • Ortwine JK, Werth BJ, Sakoulas G, et al. Reduced glycopeptide and lipopeptide susceptibility in staphylococcus aureus and the “seesaw effect”: taking advantage of the back door left open? Drug Resist Updat. 2013;16(3):73–79. doi: 10.1016/j.drup.2013.10.002
  • Ceftaroline [package insert]. Allergan Madison NJ; 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/200327s028lbl.pdf
  • Duplessis C, Crum-Cianflone NF. Ceftaroline: a new cephalosporin with activity against methicillin-resistant staphylococcus aureus (MRSA). Clin Med Rev Ther. 2011 Feb 10;3:a2466. doi: 10.4137/CMRT.S1637
  • Ge Y, Biek D, Talbot GH, et al. In vitro profiling of ceftaroline against a collection of recent bacterial clinical isolates from across the United States. Antimicrob Agents Chemother. 2008;52(9):3398–3407. doi: 10.1128/AAC.00149-08
  • Sader HS, Fritsche TR, Kaniga K, et al. Antimicrobial activity and spectrum of PPI-0903M (T-91825), a novel cephalosporin, tested against a worldwide collection of clinical strains. Antimicrob Agents Chemother. 2005;49(8):3501–3512. doi: 10.1128/AAC.49.8.3501-3512.2005
  • Mushtaq S, Warner M, Ge Y, et al. In vitro activity of ceftaroline (PPI-0903M, T-91825) against bacteria with defined resistance mechanisms and phenotypes. J Antimicrob Chemother. 2007;60(2):300–311. doi: 10.1093/jac/dkm150
  • Vidaillac C, Leonard SN, Rybak MJ. In vitro evaluation of ceftaroline alone and in combination with tobramycin against hospital-acquired meticillin-resistant staphylococcus aureus (HA-MRSA) isolates. Int J Antimicrob Agents. 2010;35(6):527–530. doi: 10.1016/j.ijantimicag.2010.02.006
  • Saravolatz L, Pawlak J, Johnson L. In vitro activity of ceftaroline against community-associated methicillin-resistant, vancomycin-intermediate, vancomycin-resistant, and daptomycin-nonsusceptible staphylococcus aureus isolates. Antimicrob Agents Chemother. 2010;54(7):3027–3030. doi: 10.1128/AAC.01516-09
  • Jacqueline C, Caillon J, Le Mabecque V, et al. In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate staphylococcus aureus in a rabbit endocarditis model. Antimicrob Agents Chemother. 2007;51(9):3397–3400. doi: 10.1128/AAC.01242-06
  • Blumenthal KG, Kuhlen JL Jr., Weil AA, et al. Adverse drug reactions associated with ceftaroline use: a 2-center retrospective cohort. J Allergy Clin Immunol Pract. 2016;4(4):740–746. doi: 10.1016/j.jaip.2016.03.008
  • Jain R, Chan JD, Rogers L, et al. High incidence of discontinuations due to adverse events in patients treated with ceftaroline. Pharmacotherapy. 2014;34(7):758–763. doi: 10.1002/phar.1435
  • Jansen JW, Linneman TW, Tan X, et al. Comparison of adverse drug reactions between patients treated with ceftaroline or ceftriaxone: a single-center, matched cohort study. Open Forum Infect Dis. 2019;6(7):ofz279. doi: 10.1093/ofid/ofz279
  • Jansen JW, Moenster RP. Rate and incidence of adverse reactions associated with ceftaroline exposure: importance of cutaneous manifestations. Ann Pharmacother. 2018;52(3):235–239. doi: 10.1177/1060028017735629
  • Rimawi RH, Frenkel A, Cook PP. Ceftaroline - a cause for neutropenia. J Clin Pharm Ther. 2013;38(4):330–332. doi: 10.1111/jcpt.12062
  • Yam FK, Kwan BK. A case of profound neutropenia and agranulocytosis associated with off-label use of ceftaroline. Am J Health Syst Pharm. 2014;71(17):1457–1461. doi: 10.2146/ajhp130474
  • Justo JA, Mayer SM, Pai MP, et al. Pharmacokinetics of ceftaroline in normal body weight and obese (classes I, II, and III) healthy adult subjects. Antimicrob Agents Chemother. 2015;59(7):3956–3965. doi: 10.1128/AAC.00498-15
  • Helfer VE, Zavascki AP, Zeitlinger M, et al. Population pharmacokinetic modeling and probability of target attainment of ceftaroline in brain and soft tissues. Antimicrob Agents Chemother. 2022;66(9):e0074122. doi: 10.1128/aac.00741-22
  • Riccobene TA, Pushkin R, Jandourek A, et al. Penetration of ceftaroline into the epithelial lining fluid of healthy adult subjects. Antimicrob Agents Chemother. 2016;60(10):5849–5857. doi: 10.1128/AAC.02755-15
  • Andes D, Craig WA. Pharmacodynamics of a new cephalosporin, PPI-0903 (TAK-599), active against methicillin-resistant staphylococcus aureus in murine thigh and lung infection models: identification of an in vivo pharmacokinetic-pharmacodynamic target. Antimicrob Agents Chemother. 2006;50(4):1376–1383. doi: 10.1128/AAC.50.4.1376-1383.2006
  • Das S, Li J, Iaconis J, et al. Ceftaroline fosamil doses and breakpoints for staphylococcus aureus in complicated skin and soft tissue infections. J Antimicrob Chemother. 2019;74(2):425–431. doi: 10.1093/jac/dky439
  • Bucheit J, Collins R, Joshi P. Methicillin-resistant staphylococcus aureus epidural abscess treated with ceftaroline fosamil salvage therapy. Am J Health Syst Pharm. 2014;71(2):110–113. doi: 10.2146/ajhp130246
  • Cies JJ, Moore WS, Enache A, et al. Ceftaroline for suspected or confirmed invasive methicillin-resistant staphylococcus aureus: a pharmacokinetic case series. Pediatr Crit Care Med. 2018;19(6):e292–e299. doi: 10.1097/PCC.0000000000001497
  • Ho TT, Cadena J, Childs LM, et al. Methicillin-resistant staphylococcus aureus bacteraemia and endocarditis treated with ceftaroline salvage therapy. J Antimicrob Chemother. 2012;67(5):1267–1270. doi: 10.1093/jac/dks006
  • Kuriakose SS, Rabbat M, Gallagher JC. Ceftaroline CSF concentrations in a patient with ventriculoperitoneal shunt-related meningitis. J Antimicrob Chemother. 2015;70(3):953–954. doi: 10.1093/jac/dku464
  • Corey GR, Wilcox M, Talbot GH, et al. Integrated analysis of CANVAS 1 and 2: phase 3, multicenter, randomized, double-blind studies to evaluate the safety and efficacy of ceftaroline versus vancomycin plus aztreonam in complicated skin and skin-structure infection. Clin Infect Dis. 2010;51(6):641–650. doi: 10.1086/655827
  • Jandourek A, Smith A, Llorens L, et al. Efficacy of ceftaroline fosamil for bacteremia associated with community-acquired bacterial pneumonia. Hosp Pract (1995). 2014;42(1):75–78. doi: 10.3810/hp.2014.02.1094
  • Zhong NS, Sun T, Zhuo C, et al. Ceftaroline fosamil versus ceftriaxone for the treatment of Asian patients with community-acquired pneumonia: a randomised, controlled, double-blind, phase 3, non-inferiority with nested superiority trial. Lancet Infect Dis. 2015;15(2):161–171. doi: 10.1016/S1473-3099(14)71018-7
  • File TM Jr., Low DE, Eckburg PB, et al. Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis. 2010;51(12):1395–1405. doi: 10.1086/657313
  • Ramani A, Udeani G, Evans J, et al. Contemporary use of ceftaroline fosamil for the treatment of community-acquired bacterial pneumonia: CAPTURE study experience. J Chemother. 2014;26(4):229–234. doi: 10.1179/1973947814Y.0000000184
  • Kaye KS, Udeani G, Cole P, et al. Ceftaroline fosamil for the treatment of hospital-acquired pneumonia and ventilator-associated pneumonia. Hosp Pract. 2015;43(3):144–149. doi: 10.1080/21548331.2015.1037228
  • Rand KH, Houck HJ. Synergy of daptomycin with oxacillin and other β-lactams against methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(8):2871–2875. doi: 10.1128/AAC.48.8.2871-2875.2004
  • Geriak M, Haddad F, Rizvi K, et al. Clinical data on Daptomycin plus ceftaroline versus Standard of Care Monotherapy in the treatment of methicillin-resistant staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2019 Apr 25;63(5):e02483-18. doi: 10.1128/AAC.02483-18. PMID: 30858203; PMCID: PMC6496065
  • Cies JJ, Moore WS, Enache A, et al. Ceftaroline cerebrospinal fluid Penetration in the treatment of a ventriculopleural shunt infection: a case report. J Pediatr Pharmacol Ther. 2020;25(4):336–339. doi: 10.5863/1551-6776-25.4.336
  • Balouch MA, Bajwa RJ, Hassoun A. Successful use of ceftaroline for the treatment of MRSA meningitis secondary to an infectious complication of lumbar spine surgery. J Antimicrob Chemother. 2015;70(2):624–625. doi: 10.1093/jac/dku392
  • Holland TL, Cosgrove SE, Doernberg SB, et al. LB2302. Ceftobiprole compared to daptomycin with or without optional aztreonam for the treatment of complicated staphylococcus aureus (SAB): results of a phase 3, randomized, double-blind trial (ERADICATE). Open Forum Infect Dis. 2022;9(Suppl 2). doi: 10.1093/ofid/ofac492.1892
  • Liapikou A, Cillóniz C, Torres A. Ceftobiprole for the treatment of pneumonia: a European perspective. Drug Des Devel Ther. 2015;9:4565–4572. doi: 10.2147/DDDT.S56616
  • Turner NA, Zaharoff S, King H, et al. Dalbavancin as an option for treatment of S. aureus bacteremia (DOTS): study protocol for a phase 2b, multicenter, randomized, open-label clinical trial. Trials. 2022;23(1):407. doi: 10.1186/s13063-022-06370-1
  • Dalbavancin [package insert]. Allergan USA Inc Irvine CA; 2018. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021883s007lbl.pdf
  • Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis. 2005;40(3):374–380. doi: 10.1086/427283
  • Hakim A, Braun H, Thornton D, et al. Successful treatment of methicillin-sensitive staphylococcus aureus tricuspid-valve endocarditis with dalbavancin as an outpatient in a person who injects drugs: a case report. Int J Infect Dis. 2020;91:202–205. doi: 10.1016/j.ijid.2019.12.008
  • Morrisette T, Miller MA, Montague BT, et al. On- and off-label utilization of dalbavancin and oritavancin for gram-positive infections. J Antimicrob Chemother. 2019;74(8):2405–2416. doi: 10.1093/jac/dkz162
  • Bork JT, Heil EL, Berry S, et al. Dalbavancin use in vulnerable patients receiving outpatient parenteral antibiotic therapy for invasive gram-positive infections. Infect Dis Ther. 2019;8(2):171–184. doi: 10.1007/s40121-019-0247-0
  • Tobudic S, Forstner C, Burgmann H, et al. Dalbavancin as primary and sequential treatment for gram-positive infective endocarditis: 2-year experience at the General hospital of Vienna. Clin Infect Dis. 2018;67(5):795–798. doi: 10.1093/cid/ciy279
  • Tong SYC, Mora J, Bowen AC, et al. The staphylococcus aureus network adaptive platform trial protocol: new tools for an old foe. Clin Infect Dis. 2022;75(11):2027–2034. doi: 10.1093/cid/ciac476

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.