1,621
Views
0
CrossRef citations to date
0
Altmetric
Review

The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment

, , , , &
Pages 1355-1364 | Received 02 Sep 2023, Accepted 09 Nov 2023, Published online: 22 Nov 2023

References

  • Organization WH. Global tuberculosis report 2022 Available from: https://www.who.int/publications/i/item/9789240061729
  • Baral T, Kurian SJ, Thomas L, et al. Impact of tuberculosis disease on human gut microbiota: a systematic review. Expert Rev Anti Infect Ther. 2023;21(2):175–188. doi: 10.1080/14787210.2023.2162879
  • Wu S, Wang M, Zhang M, et al. Metabolomics and microbiomes for discovering biomarkers of antituberculosis drugs-induced hepatotoxicity. Arch Biochem Biophys. 2022;716:109118. doi: 10.1016/j.abb.2022.109118
  • Noor S, Ismail M, Khan F. Drug safety in hospitalized patients with tuberculosis: drug interactions and adverse drug effects. Clin Respir J. 2021;15(1). doi: 10.1111/crj.13276
  • Malesza IJ, Malesza M, Walkowiak J, et al. High-fat, Western-style Diet, systemic inflammation, and gut microbiota: a narrative review. Cells. 2021 Nov 14;10(11). doi: 10.3390/cells10113164
  • Yang JJ, Wang JT, Cheng A, et al. Impact of broad-spectrum antimicrobial treatment on the ecology of intestinal flora. J Microbiol Immunol Infect. 2018 Oct;51(5):681–687. doi: 10.1016/j.jmii.2016.12.009
  • Hong B-Y, Maulén NP, Adami AJ, et al. Microbiome changes during tuberculosis and antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–926. doi: 10.1128/CMR.00096-15
  • Dumas A, Corral D, Colom A, et al. The host microbiota Contributes to Early protection against lung colonization by Mycobacterium tuberculosis. Front Immunol. 2018;9:2656. doi: 10.3389/fimmu.2018.02656
  • Kim S-H, Jang Y-S. Recent insights into cellular crosstalk in respiratory and gastrointestinal mucosal immune systems. Immune Netw. 2020;20(6):e44. doi: 10.4110/in.2020.20.e44
  • Shah T, Shah Z, Baloch Z, et al. The role of microbiota in respiratory health and diseases, particularly in tuberculosis. Biomed Pharmacother. 2021;143:112108. doi: 10.1016/j.biopha.2021.112108
  • Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15(1):55–63. doi: 10.1038/nrmicro.2016.142
  • Comberiati P, Di Cicco M, Paravati F, et al. The role of gut and lung microbiota in susceptibility to tuberculosis. Int J Environ Res Public Health. 2021;18(22): doi: 10.3390/ijerph182212220
  • Cai Y, Chen L, Zhang S, et al. The role of gut microbiota in infectious diseases. WIREs mechanisms of disease. 2022 Jul;14(4):e1551. doi: 10.1002/wsbm.1551
  • Whitehead GS, Thomas SY, Cook DN. Modulation of distinct asthmatic phenotypes in mice by dose-dependent inhalation of microbial products. Environ Health Perspect. 2014;122(1):34–42. doi: 10.1289/ehp.1307280
  • Lu J, Xiong L, Zhang X, et al. The role of lower airway dysbiosis in Asthma: dysbiosis and Asthma. Mediators Inflamm. 2017;2017:3890601. doi: 10.1155/2017/3890601
  • Song P, Yang D, Wang H, et al. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients. Thorac Cancer. 2020;11(6):1621–1632. doi: 10.1111/1759-7714.13442
  • Pizzo F, Maroccia Z, Hammarberg Ferri I, et al. Role of the microbiota in lung cancer: insights on prevention and treatment. Int J Mol Sci. 2022;23(11): doi: 10.3390/ijms23116138
  • Lee Y, Seo H, Kim S, et al. Activity of lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis. J Microbiol. 2021;59(11):1019–1030. doi: 10.1007/s12275-021-1332-0
  • He C, Wang H, Yu C, et al. Alterations of gut microbiota in patients with intestinal tuberculosis that different from Crohn’s disease. Front Bioeng Biotechnol. 2021;9:673691. doi: 10.3389/fbioe.2021.673691
  • Enjeti A, Sathkumara HD, Kupz A. Impact of the gut-lung axis on tuberculosis susceptibility and progression. Front Microbiol. 2023;14:1209932. doi: 10.3389/fmicb.2023.1209932
  • Wood MR, Yu EA, Mehta S. The human microbiome in the fight against tuberculosis. Am J Trop Med Hyg. 2017;96(6):1274–1284. doi: 10.4269/ajtmh.16-0581
  • Negi S, Pahari S, Bashir H, et al. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol. 2019;10:1142. doi: 10.3389/fimmu.2019.01142
  • Nakhaee M, Rezaee A, Basiri R, et al. Relation between lower respiratory tract microbiota and type of immune response against tuberculosis. Microb Pathog. 2018;120:161–165. doi: 10.1016/j.micpath.2018.04.054
  • Huang S-F, Yang Y-Y, Chou K-T, et al. Systemic proinflammation after Mycobacterium tuberculosis infection was correlated to the gut microbiome in HIV-uninfected humans. Eur J Clin Invest. 2019;49(5):e13068. doi: 10.1111/eci.13068
  • Yang F, Yang Y, Chen Y, et al. MiR-21 is remotely governed by the commensal bacteria and impairs anti-TB immunity by down-regulating IFN-γ. Front Microbiol. 2020;11:512581. doi: 10.3389/fmicb.2020.512581
  • Mathieu E, Escribano-Vazquez U, Descamps D, et al. Paradigms of lung microbiota functions in health and disease, particularly, in Asthma. Front Physiol. 2018;9:1168. doi: 10.3389/fphys.2018.01168
  • Eshetie S, van Soolingen D. The respiratory microbiota: new insights into pulmonary tuberculosis. BMC Infect Dis. 2019;19(1):92. doi: 10.1186/s12879-019-3712-1
  • Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect. 2019;78(4):317–322. doi: 10.1016/j.jinf.2018.08.006
  • Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20(10):1279–1290. doi: 10.1038/s41590-019-0451-9
  • Hufnagl K, Pali-Schöll I, Roth-Walter F, et al. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75–93. doi: 10.1007/s00281-019-00775-y
  • Nadeem S, Maurya SK, Das DK, et al. Gut dysbiosis thwarts the efficacy of vaccine against Mycobacterium tuberculosis. Front Immunol. 2020;11:726. doi: 10.3389/fimmu.2020.00726
  • Jeyanathan M, Vaseghi-Shanjani M, Afkhami S, et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut-lung axis. Nat Immunol. 2022 Dec;23(12):1687–1702. doi: 10.1038/s41590-022-01354-4
  • Valdez-Palomares F, Muñoz Torrico M, Palacios-González B, et al. Altered microbial composition of drug-sensitive and drug-resistant TB patients compared with healthy volunteers. Microorganisms. 2021;9(8): doi: 10.3390/microorganisms9081762
  • Khaliq A, Ravindran R, Afzal S, et al. Gut microbiome dysbiosis and correlation with blood biomarkers in active-tuberculosis in endemic setting. PLoS One. 2021;16(1):e0245534. doi: 10.1371/journal.pone.0245534
  • Ding X, Zhou J, Chai Y, et al. A metagenomic study of the gut microbiome in PTB’S disease. Microbes Infect. 2022;24(2):104893. doi: 10.1016/j.micinf.2021.104893
  • Cadena AM, Ma Y, Ding T, et al. Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome. 2018;6(1):180. doi: 10.1186/s40168-018-0560-y
  • Huang H-L, Luo Y-C, Lu P-L, et al. Gut microbiota composition can reflect immune responses of latent tuberculosis infection in patients with poorly controlled diabetes. Respir Res. 2023;24(1):11. doi: 10.1186/s12931-023-02312-w
  • Zafar H, Saier MH. Gut Bacteroides species in health and disease. Gut Microbes. 2021;13(1). doi: 10.1080/19490976.2020.1848158
  • Wang Y, Deng Y, Liu N, et al. Alterations in the gut microbiome of individuals with tuberculosis of different disease states. Front Cell Infect Microbiol. 2022;12:836987. doi: 10.3389/fcimb.2022.836987
  • Majlessi L, Sayes F, Bureau JF, et al. Colonization with Helicobacter is concomitant with modified gut microbiota and drastic failure of the immune control of Mycobacterium tuberculosis. Mucosal Immunol. 2017;10(5):1178–1189. doi: 10.1038/mi.2016.140
  • Wang S, Yang L, Hu H, et al. Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis. Microbiol Biotechnol. 2022;15(1):262–275. doi: 10.1111/1751-7915.13761
  • Qin N, Zheng B, Yao J, et al. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep. 2015;5:14771. doi: 10.1038/srep14771
  • Li W, Zhu Y, Liao Q, et al. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr. 2019;19(1):445. doi: 10.1186/s12887-019-1782-2
  • Luo M, Liu Y, Wu P, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol. 2017;8:822. doi: 10.3389/fphys.2017.00822
  • Ding L, Liu Y, Wu X, et al. Pathogen metagenomics reveals distinct lung microbiota signatures between bacteriologically confirmed and negative tuberculosis patients. Front Cell Infect Microbiol. 2021;11:708827. doi: 10.3389/fcimb.2021.708827
  • Vázquez-Pérez JA, Carrillo CO, Iñiguez-García MA, et al. Alveolar microbiota profile in patients with human pulmonary tuberculosis and interstitial pneumonia. Microb Pathog. 2020;139:103851. doi: 10.1016/j.micpath.2019.103851
  • Sala C, Benjak A, Goletti D, et al. Multicenter analysis of sputum microbiota in tuberculosis patients. PLoS One. 2020;15(10):e0240250. doi: 10.1371/journal.pone.0240250
  • Xiao G, Cai Z, Guo Q, et al. Insights into the unique lung microbiota profile of pulmonary tuberculosis patients using metagenomic next-generation sequencing. Microbiol Spectr. 2022;10(1):e0190121. doi: 10.1128/spectrum.01901-21
  • Krishna P, Jain A, Bisen PS. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis. 2016;35(7):1205–1210. doi: 10.1007/s10096-016-2654-4
  • Huang Y, Tang J-H, Cai Z, et al. Alterations in the nasopharyngeal microbiota associated with active and latent tuberculosis. Tuberculosis (Edinb). 2022;136:102231. doi: 10.1016/j.tube.2022.102231
  • Yang F, Yang Y, Chen L, et al. The gut microbiota mediates protective immunity against tuberculosis via modulation of lncRNA. Gut Microbes. 2022;14(1):2029997. doi: 10.1080/19490976.2022.2029997
  • Naidoo CC, Nyawo GR, Sulaiman I, et al. Anaerobe-enriched gut microbiota predicts pro-inflammatory responses in pulmonary tuberculosis. EBioMedicine. 2021;67:103374. doi: 10.1016/j.ebiom.2021.103374
  • Karo-Atar D, Khan N, Divangahi M, et al. Helminth-mediated disease tolerance in TB: a role for microbiota? PLOS Pathog. 2021;17(7):e1009690. doi: 10.1371/journal.ppat.1009690
  • Perry S, de Jong BC, Solnick JV, et al. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLoS One. 2010;5(1):e8804. doi: 10.1371/journal.pone.0008804
  • Cao D, Liu W, Lyu N, et al. Gut mycobiota dysbiosis in pulmonary tuberculosis patients undergoing anti-tuberculosis treatment. Microbiol Spectr. 2021;9(3):e0061521. doi: 10.1128/spectrum.00615-21
  • Hu Y, Kang Y, Liu X, et al. Distinct lung microbial community states in patients with pulmonary tuberculosis. Sci China Life Sci. 2020;63(10):1522–1533. doi: 10.1007/s11427-019-1614-0
  • Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome. 2017;5(1):71. doi: 10.1186/s40168-017-0286-2
  • Kateete DP, Mbabazi MM, Nakazzi F, et al. Sputum microbiota profiles of treatment-naïve TB patients in Uganda before and during first-line therapy. Sci Rep. 2021;11(1):24486. doi: 10.1038/s41598-021-04271-y
  • Ueckermann V, Lebre P, Geldenhuys J, et al. The lung microbiome in HIV-positive patients with active pulmonary tuberculosis. Sci Rep. 2022;12(1):8975. doi: 10.1038/s41598-022-12970-3
  • Sathkumara HD, Eaton JL, Field MA, et al. A murine model of tuberculosis/type 2 diabetes comorbidity for investigating the microbiome, metabolome and associated immune parameters. Animal Model Exp Med. 2021;4(2):181–188. doi: 10.1002/ame2.12159
  • Wensel CR, Pluznick JL, Salzberg SL, et al. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J Clin Invest. 2022;132(7): doi: 10.1172/JCI154944
  • Eribo OA, du Plessis N, Ozturk M, et al. The gut microbiome in tuberculosis susceptibility and treatment response: guilty or not guilty? Cell Mol Life Sci. 2020;77(8):1497–1509. doi: 10.1007/s00018-019-03370-4
  • Diallo D, Somboro AM, Diabate S, et al. Antituberculosis therapy and gut microbiota: review of potential host microbiota directed-therapies. Front Cell Infect Microbiol. 2021;11:673100. doi: 10.3389/fcimb.2021.673100
  • Chung KF. Potential role of the lung microbiome in shaping Asthma phenotypes. Ann Am Thorac Soc. 2017;14(Supplement_5):S326–S331. doi: 10.1513/AnnalsATS.201702-138AW
  • Vaughan A, Frazer ZA, Hansbro PM, et al. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–S2180. doi: 10.21037/jtd.2019.10.40
  • Liu Y, Wang J, Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics. Front Nutr. 2021;8:626254. doi: 10.3389/fnut.2021.626254
  • Miqdady M, Al Mistarihi J, Azaz A, et al. Prebiotics in the infant microbiome: the past, present, and future. Pediatr Gastroenterol Hepatol Nutr. 2020;23(1): doi: 10.5223/pghn.2020.23.1.1
  • Eribo OA, du Plessis N, Chegou NN, et al. The Intestinal Commensal, Bacteroides fragilis, Modulates Host Responses to Viral Infection and Therapy: Lessons for Exploration during Mycobacterium tuberculosis Infection. Infect Immun. 2022;90(1):e0032121. doi: 10.1128/IAI.00321-21
  • Lin D, Wang X, Li Y, et al. Sputum microbiota as a potential diagnostic marker for multidrug-resistant tuberculosis. Int J Med Sci. 2021;18(9):1935–1945. doi: 10.7150/ijms.53492
  • Wiqoyah N, Mertaniasih NM, Artama WT, et al. Microbiome in sputum as a potential biomarker of chronicity in pulmonary resistant to rifampicin-tuberculosis and multidrug-resistant-tuberculosis patients. Int J Mycobacteriol. 2021;10(3):260–267. doi: 10.4103/ijmy.ijmy_132_21
  • Negatu DA, Yamada Y, Xi Y, et al. Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in Mycobacterium tuberculosis. MBio. 2019 Mar 26;10(2). doi: 10.1128/mBio.02781-18