583
Views
8
CrossRef citations to date
0
Altmetric
Review

The landscape of viral proteomics and its potential to impact human health

, , , , , , & show all
Pages 579-591 | Received 29 Feb 2016, Accepted 26 Apr 2016, Published online: 26 May 2016

References

  • Pasa-Tolic L, Masselon C, Barry RC, et al. Proteomic analyses using an accurate mass and time tag strategy. Biotechniques. 2004;37(4):621633. 636 passim
  • Zhang Y, Wen Z, Washburn MP, et al. Improving label-free quantitative proteomics strategies by distributing shared peptides and stabilizing variance. Anal Chem. 2015;87(9):4749–4756.
  • Oberg AL, Mahoney DW. Statistical methods for quantitative mass spectrometry proteomic experiments with labeling. BMC Bioinformatics. 2012;13(Suppl 16):S7.
  • Webb-Robertson BJ, Matzke MM, Jacobs JM, et al. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Proteomics. 2011;11(24):4736–4741.
  • Gaudin R, De Alencar BC, Arhel N, et al. HIV trafficking in host cells: motors wanted! Trends Cell Biol. 2013;23(12):652–662.
  • Chan EY, Sutton JN, Jacobs JM, et al. Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry. J Virol. 2009;83(18):9283–9295.
  • Abraham R, Mudaliar P, Jaleel A, et al. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics. 2015;120:126–141.
  • Fraisier C, Koraka P, Belghazi M, et al. Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One. 2014;9(3):e91397.
  • Pastorino B, Boucomont-Chapeaublanc E, Peyrefitte CN, et al. Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics. 2009;8(7):1623–1637.
  • Kummer S, Flottmann M, Schwanhausser B, et al. Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics. PLoS One. 2014;9(4):e94257.
  • Zhao H, Yang J, Li K, et al. Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1). Antiviral Res. 2013;100(3):673–687.
  • Liu C, Zhang A, Guo J, et al. Identification of human host proteins contributing to H5N1 Influenza virus propagation by membrane proteomics. J Proteome Res. 2012;11(11):5396–5405.
  • Simon PF, McCorrister S, Hu P, et al. Highly pathogenic H5N1 and novel H7N9 influenza A viruses induce more profound proteomic host responses than seasonal and pandemic H1N1 strains. J Proteome Res. 2015;14(11):4511–4523.
  • Kroeker AL, Ezzati P, Halayko AJ, et al. Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study. J Proteome Res. 2012;11(8):4132–4146.
  • Liu L, Zhou J, Wang Y, et al. Proteome alterations in primary human alveolar macrophages in response to influenza A virus infection. J Proteome Res. 2012;11(8):4091–4101.
  • Reimers K, Choi CY, Bucan V, et al. The Bax Inhibitor-1 (BI-1) family in apoptosis and tumorigenesis. Curr Mol Med. 2008;8(2):148–156.
  • Wynne JW, Shiell BJ, Marsh GA, et al. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol. 2014;15(11):532.
  • Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol. 2014;32:513–545.
  • Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. Curr Opin Virol. 2014;6:40–46.
  • Chiu HC, Hannemann H, Heesom KJ, et al. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One. 2014;9(3):e93305.
  • Diamond MS, Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat Rev Immunol. 2013;13(1):46–57.
  • Wacher C, Müller M, Hofer MJ, et al. Coordinated regulation and widespread cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 in the central nervous system after infection with distinct viruses. J Virol. 2007;81(2):860–871.
  • Kebaabetswe LP, Haick AK, Gritsenko MA, et al. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology. 2015;483:96–107.
  • Coombs KM, Berard A, Xu W, et al. Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol. 2010;84(20):10888–10906.
  • Lietzen N, Ohman T, Rintahaka J, et al. Quantitative subcellular proteome and secretome profiling of influenza A virus-infected human primary macrophages. PLoS Pathog. 2011;7(5):e1001340.
  • Navare AT, Sova P, Purdy DE, et al. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: protein synthesis, cell proliferation, and T-cell activation. Virology. 2012;429(1):37–46.
  • Goodwin CM, Xu S, Munger J. Stealing the keys to the kitchen: viral manipulation of the host cell metabolic network. Trends Microbiol. 2015;23(12):789–798.
  • Chukkapalli V, Heaton NS, Randall G. Lipids at the interface of virus-host interactions. Curr Opin Microbiol. 2012;15(4):512–518.
  • Hammarstedt M, Garoff H. Passive and active inclusion of host proteins in human immunodeficiency virus type 1 gag particles during budding at the plasma membrane. J Virol. 2004;78(11):5686–5697.
  • Garrus JE, Von Schwedler UK, Pornillos OW, et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001;107(1):55–65.
  • Chertova E, Chertov O, Coren LV, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80(18):9039–9052.
  • Shaw ML, Stone KL, Colangelo CM, et al. Cellular proteins in influenza virus particles. PLoS Pathog. 2008;4(6):e1000085.
  • Hutchinson EC, Charles PD, Hester SS, et al. Conserved and host-specific features of influenza virion architecture. Nat Commun. 2014;5:4816.
  • Chung CS, Chen CH, Ho MY, et al. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol. 2006;80(5):2127–2140.
  • Spurgers KB, Alefantis T, Peyser BD, et al. Identification of essential filovirion-associated host factors by serial proteomic analysis and RNAi screen. Mol Cell Proteomics. 2010;9(12):2690–2703.
  • Nuss JE, Kehn-Hall K, Benedict A, et al. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors. PLoS One. 2014;9(5):e93483.
  • Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics. 2005;5(13):3262–3277.
  • Jacobs JM, Adkins JN, Qian WJ, et al. Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res. 2005;4(4):1073–1085.
  • Fragnoud R, Yugueros-Marcos J, Pachot A, et al. Isotope Coded Protein Labeling analysis of plasma specimens from acute severe dengue fever patients. Proteome Sci. 2012;10(1):60.
  • Haverland NA, Villeneuve LM, Ciborowski P, et al. The proteomic characterization of plasma or serum from HIV-infected patients. Methods Mol Biol. 2016;1354:293–310.
  • Kramer HB, Lavender KJ, Qin L, et al. Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection. PLoS Pathog. 2010;6(5):e1000893.
  • Pendyala G, Trauger SA, Siuzdak G, et al. Quantitative plasma proteomic profiling identifies the vitamin E binding protein afamin as a potential pathogenic factor in SIV induced CNS disease. J Proteome Res. 2010;9(1):352–358.
  • Puttamallesh VN, Sreenivasamurthy SK, Singh PK, et al. Proteomic profiling of serum samples from chikungunya-infected patients provides insights into host response. Clin Proteomics. 2013;10(1):14.
  • Ray S, Srivastava R, Tripathi K, et al. Serum proteome changes in dengue virus-infected patients from a dengue-endemic area of India: towards new molecular targets? Omics. 2012;16(10):527–536.
  • Schlatzer DM, Sugalski JM, Chen Y, et al. Plasma proteome analysis reveals overlapping, yet distinct mechanisms of immune activation in chronic HCV and HIV infections. J Acquir Immune Defic Syndr. 2013;63(5):563–571.
  • Yip TT, Chan JW, Cho WC, et al. Protein chip array profiling analysis in patients with severe acute respiratory syndrome identified serum amyloid a protein as a biomarker potentially useful in monitoring the extent of pneumonia. Clin Chem. 2005;51(1):47–55.
  • Ray S, Patel SK, Kumar V, et al. Differential expression of serum/plasma proteins in various infectious diseases: specific or nonspecific signatures. Proteomics Clin Appl. 2014;8(1–2):53–72.
  • Kumar Y, Liang C, Bo Z, et al. Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. PLoS Negl Trop Dis. 2012;6(11):e1887.
  • Wang X, Abraham S, McKenzie JA, et al. LRG1 promotes angiogenesis by modulating endothelial TGF-beta signalling. Nature. 2013;499(7458):306–311.
  • Fragnoud R, Flamand M, Reynier F, et al. Differential proteomic analysis of virus-enriched fractions obtained from plasma pools of patients with dengue fever or severe dengue. BMC Infect Dis. 2015;15(1):518.
  • Brand HK, Ahout IM, De Ridder D, et al. Olfactomedin 4 serves as a marker for disease severity in pediatric respiratory syncytial virus (RSV) infection. PLoS One. 2015;10(7):e0131927.
  • Greene JM, Collins F, Lefkowitz EJ, et al. National Institute of Allergy and Infectious Diseases bioinformatics resource centers: new assets for pathogen informatics. Infection and Immunity. 2007;75(7):3212–3219.
  • Bioinformatics Resource Centers. National Institute of Allergy and Infectious Diseases; 2016. https://www.niaid.nih.gov/labsandresources/resources/dmid/brc/Pages/default.aspx.
  • Pickett BE, Sadat EL, Zhang Y, et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Research. 2012;40(Database issue):D593–598.
  • ViPR Virus Pathogen Resource. National Institute of Allergy and Infectious Diseases; 2016. http://www.viprbrc.org/brc/home.spg?decorator=vipr.
  • Aderem A, Adkins JN, Ansong C, et al. A systems biology approach to infectious disease research: innovating the pathogen-host research paradigm. mBio. 2011;2(1):e00325–00310.
  • Aevermann BD, Pickett BE, Kumar S, et al. A comprehensive collection of systems biology data characterizing the host response to viral infection. Scientific Data. 2014;1:140033.
  • Edwards NJ, Oberti M, Thangudu RR, et al. The CPTAC Data Portal: a resource for cancer proteomics research. J Proteome Res. 2015;14(6):2707–2713.
  • Zhang B, Wang J, Wang X, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513(7518):382–387.
  • Tabb DL, Wang X, Carr SA, et al. Reproducibility of differential proteomic technologies in CPTAC fractionated xenografts. J Proteome Res. 2016;15(3):691–706.
  • Whiteaker JR, Halusa GN, Hoofnagle AN, et al. CPTAC Assay Portal: a repository of targeted proteomic assays. Nat Methods. 2014;11(7):703–704.
  • Richards AL, Merrill AE, Coon JJ. Proteome sequencing goes deep. Curr Opin Chem Biol. 2015;24:11–17.
  • Zubarev RA. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13(5):723–726.
  • Moradian A, Kalli A, Sweredoski MJ, et al. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics. 2014;14(4–5):489–497.
  • Hendrickson CL, Quinn JP, Kaiser NK, et al. 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer: a national resource for ultrahigh resolution mass analysis. J Am Soc Mass Spectrom. 2015;26(9):1626–1632.
  • Mayne J, Ning Z, Zhang X, et al. Bottom-up proteomics (2013–2015): keeping up in the era of systems biology. Anal Chem. 2016;88(1):95–121.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–965.
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372.
  • Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun. 2014;5:5277.
  • Von Bergen M, Jehmlich N, Taubert M, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. Isme J. 2013;7(10):1877–1885.
  • Werner T, Sweetman G, Savitski MF, et al. Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem. 2014;86(7):3594–3601.
  • Taylor MP, Koyuncu OO, Enquist LW. Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol. 2011;9(6):427–439.
  • Clarke P, Tyler KL. Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol. 2009;7(2):144–155.
  • Liang C, Oh BH, Jung JU. Novel functions of viral anti-apoptotic factors. Nat Rev Microbiol. 2015;13(1):7–12.
  • Dhanwani R, Khan M, Alam SI, et al. Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics. 2011;11(10):1936–1951.
  • Zhang L, Zhang ZP, Zhang XE, et al. Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J Virol. 2010;84(12):6050–6059.
  • Sacco F, Perfetto L, Castagnoli L, et al. The human phosphatase interactome: an intricate family portrait. FEBS Lett. 2012;586(17):2732–2739.
  • Phosphonet: human phosphosite knowledgebase. Corporation, KB; 2015. Kinexus Bioinformatics Corporation http://www.phosphonet.ca/.
  • Wojcechowskyj JA, Didigu CA, Lee JY, et al. Quantitative phosphoproteomics reveals extensive cellular reprogramming during HIV-1 entry. Cell Host Microbe. 2013;13(5):613–623.
  • Francis AC, Di Primio C, Allouch A, et al. Role of phosphorylation in the nuclear biology of HIV-1. Curr Med Chem. 2011;18(19):2904–2912.
  • Dapat C, Saito R, Suzuki H, et al. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection. Virus Res. 2014;179:53–63.
  • Zhang H, Sun J, Ye J, et al. Quantitative label-free phosphoproteomics reveals differentially regulated protein phosphorylation involved in West Nile virus-induced host inflammatory response. J Proteome Res. 2015;14(12):5157–5168.
  • Prodhomme EJ, Fack F, Revets D, et al. Extensive phosphorylation flanking the C-terminal functional domains of the measles virus nucleoprotein. J Proteome Res. 2010;9(11):5598–5609.
  • Hagiwara K, Sato H, Inoue Y, et al. Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA. Proteomics. 2008;8(9):1871–1879.
  • Bell C, Desjardins M, Thibault P, et al. Proteomics analysis of herpes simplex virus type 1-infected cells reveals dynamic changes of viral protein expression, ubiquitylation, and phosphorylation. J Proteome Res. 2013;12(4):1820–1829.
  • Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature. 2009;458(7237):422–429.
  • Ciechanover A. The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol. 2015;16(5):322–324.
  • Calistri A, Munegato D, Carli I, et al. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells. 2014;3(2):386–417.
  • Randow F, Lehner PJ. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol. 2009;11(5):527–534.
  • Minor MM, Slagle BL. Hepatitis B virus HBx protein interactions with the ubiquitin proteasome system. Viruses. 2014;6(11):4683–4702.
  • van den Boomen DJ, Timms RT, Grice GL, et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proc Natl Acad Sci U S A. 2014;111(31):11425–11430.
  • Carpp LN, Rogers RS, Moritz RL, et al. Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi brefeldin A resistance factor 1 (GBF1) in dengue infection. Mol Cell Proteomics. 2014;13(11):2836–2854.
  • Munday DC, Emmott E, Surtees R, et al. Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Mol Cell Proteomics. 2010;9(11):2438–2459.
  • Kanlaya R, Pattanakitsakul SN, Sinchaikul S, et al. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res. 2010;9(10):4960–4971.
  • Fraisier C, Rodrigues R, Vu Hai V, et al. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection. Virus Res. 2014;179:187–203.
  • Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol. 2013;11(6):400–411.
  • Wimmer P, Schreiner S. Viral mimicry to usurp ubiquitin and SUMO host pathways. Viruses. 2015;7(9):4854–4872.
  • Lamoliatte F, Bonneil E, Durette C, et al. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Mol Cell Proteomics. 2013;12(9):2536–2550.
  • Domingues P, Golebiowski F, Tatham MH, et al. Global reprogramming of host SUMOylation during influenza virus infection. Cell Rep. 2015;13(7):1467–1480.
  • Su CI, Tseng CH, Yu CY, et al. SUMO modification stabilizes dengue virus nonstructural protein 5. J Virol. 2016;90(9):4308–4319.
  • Lee HS, Lim YS, Park EM, et al. SUMOylation of nonstructural 5A protein regulates hepatitis C virus replication. J Viral Hepat. 2014;21(10):e108–117.
  • Cai Q, Cai S, Zhu C, et al. A unique SUMO-2-interacting motif within LANA is essential for KSHV latency. PLoS Pathog. 2013;9(11):e1003750.
  • Gan J, Wang C, Jin Y, et al. Proteomic profiling identifies the SIM-associated complex of KSHV-encoded LANA. Proteomics. 2015;15(12):2023–2037.
  • Sinigalia E, Alvisi G, Segre CV, et al. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One. 2012;7(11):e49630.
  • Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–264.
  • Shin HJ, DeCotiis J, Giron M, et al. Histone deacetylase classes I and II regulate Kaposi’s sarcoma-associated herpesvirus reactivation. J Virol. 2014;88(2):1281–1292.
  • Liu X, Zhao L, Yang Y, et al. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells. Virology. 2014;464–465:196–205.
  • Fang CY, Shen CH, Wang M, et al. Global profiling of histone modifications in the polyomavirus BK virion minichromosome. Virology. 2015;483:1–12.
  • Sun N, Sun W, Li S, et al. Proteomics analysis of cellular proteins co-immunoprecipitated with nucleoprotein of influenza A virus (H7N9). Int J Mol Sci. 2015;16(11):25982–25998.
  • Willemsen NM, Hitchen EM, Bodetti TJ, et al. Protein methylation is required to maintain optimal HIV-1 infectivity. Retrovirology. 2006;3:92.
  • Biggar KK, Li SS. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16(1):5–17.
  • Carr SM, Poppy Roworth A, Chan C, et al. Post-translational control of transcription factors: methylation ranks highly. Febs J. 2015;282(23):4450–4465.
  • Koumbi L, Karayiannis P. The epigenetic control of hepatitis b virus modulates the outcome of infection. Front Microbiol. 2015;6:1491.
  • Van Duyne R, Kehn-Hall K, Carpio L, et al. Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case. Expert Rev Proteomics. 2009;6(5):515–526.
  • Niu D, Sui J, Zhang J, et al. iTRAQ-coupled 2-D LC-MS/MS analysis of protein profile associated with HBV-modulated DNA methylation. Proteomics. 2009;9(15):3856–3868.
  • O’Connor CM, DiMaggio PA Jr, Shenk T, et al. Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus (HCMV) infection. Mol Cell Proteomics. 2014;13(9):2399–2410.
  • Zhong H, Prentice RL. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics. 2008;9(4):621–634.
  • Cairns DA, Barrett JH, Billingham LJ, et al. Sample size determination in clinical proteomic profiling experiments using mass spectrometry for class comparison. Proteomics. 2009;9(1):74–86.
  • Matzke MM, Waters KM, Metz TO, et al. Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics. 2011;27(20):2866–2872.
  • Webb-Robertson BJ, Matzke MM, Datta S, et al. Bayesian proteoform modeling improves protein quantification of global proteomic measurements. Mol Cell Proteomics. 2014;13(12):3639–3646.
  • Matzke MM, Brown JN, Gritsenko MA, et al. A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments. Proteomics. 2013;13(3–4):493–503.
  • LaMarche BL, Crowell KL, Jaitly N, et al. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis. BMC Bioinformatics. 2013;14:49.
  • Vizcaino JA, Cote RG, Csordas A, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Research. 2013;41(Database issue):D1063–1069.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550.
  • Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–273.
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
  • Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3.
  • Gomez-Cabrero D, Abugessaisa I, Maier D, et al. Data integration in the era of omics: current and future challenges. BMC Syst Biol. 2014;8(Suppl 2):I1.
  • Mitchell HD, Eisfeld AJ, Sims AC, et al. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses. PLoS One. 2013;8(7):e69374.
  • McDermott JE, Diamond DL, Corley C, et al. Topological analysis of protein co-abundance networks identifies novel host targets important for HCV infection and pathogenesis. BMC Syst Biol. 2012;6:28.
  • Diamond DL, Krasnoselsky AL, Burnum KE, et al. Proteome and computational analyses reveal new insights into the mechanisms of hepatitis C virus-mediated liver disease posttransplantation. Hepatology. 2012;56(1):28–38.
  • Shi Z, Wang J, Zhang B. NetGestalt: integrating multidimensional omics data over biological networks. Nat Methods. 2013;10(7):597–598.
  • Tripathi S, Pohl MO, Zhou Y, et al. Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe. 2015;18(6):723–735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.