798
Views
88
CrossRef citations to date
0
Altmetric
Review

Current state of the art for enhancing urine biomarker discovery

, &
Pages 609-626 | Received 28 Mar 2016, Accepted 13 May 2016, Published online: 03 Jun 2016

References

  • Faulkner WR, King JW. Renal function. In: Tietz NW, editor. Fundamentals in clinical chemistry. Philadelphia (PA): W.B. Suanders Co.; 1976. p. 975–1014.
  • Decramer S, Gonzalez de Peredo A, Breuil B, et al. Urine in clinical proteomics. Mol Cell Proteomics. 2008;7(10):1850–1862.
  • Jia L, Zhang L, Shao C, et al. An attempt to understand kidney’s protein handling function by comparing plasma and urine proteomes. PLoS One. 2009;4(4):e5146.
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1(11):845–867.
  • Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
  • Candiano G, Santucci L, Petretto A, et al. Widening and diversifying the proteome capture by combinatorial peptide ligand libraries via Alcian Blue dye binding. Anal Chem. 2015;87(9):4814–4820.
  • Santucci L, Candiano G, Petretto A, et al. From hundreds to thousands: widening the normal human Urinome (1). J Proteomics. 2015;112:53–62.
  • Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4(4):1159–1174.
  • Chatziharalambous D, Lygirou V, Latosinska A, et al. Analytical performance of ELISA assays in urine: one more bottleneck towards biomarker validation and clinical implementation. PLoS One. 2016;11(2):e0149471.
  • Binder H, Wirth H, Arakelyan A, et al. Time-course human urine proteomics in space-flight simulation experiments. BMC Genomics. 2014;15(Suppl 12):S2.
  • Chen Y. Variations of human urinary proteome. Adv Exp Med Biol. 2015;845:91–94.
  • Khristenko NA, Larina IM, Domon B. Longitudinal urinary protein variability in participants of the space flight simulation program. J Proteome Res. 2016;15(1):114–124.
  • Larina IM, Pastushkova L, Tiys ES, et al. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J Bioinform Comput Biol. 2015;13(1):1540001.
  • Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res. 2011;10(2):637–645.
  • Davis MT, Spahr CS, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. II. Limitations of complex mixture analyses. Proteomics. 2001;1(1):108–117.
  • Spahr CS, Davis MT, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics. 2001;1(1):93–107.
  • Klein J, Eales J, Zürbig P, et al. Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation. Proteomics. 2013;13(7):1077–1082.
  • Hepburn S, Cairns DA, Jackson D, et al. An analysis of the impact of pre-analytical factors on the urine proteome: sample processing time, temperature, and proteolysis. Proteomics Clin Appl. 2015;9(5–6):507–521.
  • Norden AG, Rodriguez-Cutillas P, Unwin RJ. Clinical urinary peptidomics: learning to walk before we can run. Clin Chem. 2007;53(3):375–376.
  • Olszowy P, Buszewski B. Urine sample preparation for proteomic analysis. J Sep Sci. 2014;37(20):2920–2928.
  • Mischak H. How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS. Proteomics Clin Appl. 2012;6(9–10):437–442.
  • Cantley LG, Colangelo CM, Stone KL, et al. Development of a targeted urine proteome assay for kidney diseases. Proteomics Clin Appl. 2016;10(1):58–74.
  • Bermes EW, Erviti V, Forman DT. Sttistics, normal values, and quality control. In: Tietz NW, editor. Fundamentals of clinical chemistry. Philadelphia (PA): W.B. Saunders Co.; 1976. p. 60–102.
  • Bantscheff M, Lemeer S, Savitski MM, et al. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–965.
  • Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem. 2007;389(4):1017–1031.
  • Wittke S, Fliser D, Haubitz M, et al. Determination of peptides and proteins in human urine with capillary electrophoresis-mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A. 2003;1013(1–2):173–181.
  • Wittke S, Mischak H, Walden M, et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis. 2005;26(7–8):1476–1487.
  • Castagna A, Cecconi D, Sennels L, et al. Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res. 2005;4(6):1917–1930.
  • Luchini A, Geho DH, Bishop B, et al. Smart hydrogel particles: biomarker harvesting: one-step affinity purification, size exclusion, and protection against degradation. Nano Lett. 2008;8(1):350–361.
  • Righetti PG, Boschetti E, Lomas L, et al. Protein equalizer technology: the quest for a “democratic proteome”. Proteomics. 2006;6(14):3980–3992.
  • Thulasiraman V, Lin S, Gheorghiu L, et al. Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands. Electrophoresis. 2005;26(18):3561–3571.
  • Danish LM, Heistermann M, Agil M, et al. Validation of a novel collection device for non-invasive urine sampling from free-ranging animals. PLoS One. 2015;10(11):e0142051.
  • Froom P, Bieganiec B, Ehrenrich Z, et al. Stability of common analytes in urine refrigerated for 24 h before automated analysis by test strips. Clin Chem. 2000;46(9):1384–1386.
  • Ling XB, Mellins ED, Sylvester KG, et al. Urine peptidomics for clinical biomarker discovery. Adv Clin Chem. 2010;51:181–213.
  • Lassek C, Burghartz M, Chaves-Moreno D, et al. A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs). Mol Cell Proteomics. 2015;14(4):989–1008.
  • Marshall T, Williams KM. Total protein determination in urine: elimination of a differential response between the coomassie blue and pyrogallol red protein dye-binding assays. Clin Chem. 2000;46(3):392–398.
  • Thomsen HS, Morcos SK. Contrast media and the kidney: European Society of Urogenital Radiology (ESUR) guidelines. Br J Radiol. 2003;76(908):513–518.
  • Court M, Selevsek N, Matondo M, et al. Toward a standardized urine proteome analysis methodology. Proteomics. 2011;11(6):1160–1171.
  • Mischak H, Allmaier G, Apweiler R, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med. 2010;2(46):46ps42.
  • Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest. 2012;42(9):1027–1036.
  • Rodríguez-Suárez E, Siwy J, Zürbig P, et al. Urine as a source for clinical proteome analysis: from discovery to clinical application. Biochim Biophys Acta. 2014;1844(5):884–898.
  • Yamamoto T, Langham RG, Ronco P, et al. Towards standard protocols and guidelines for urine proteomics: a report on the Human Kidney and Urine Proteome Project (HKUPP) symposium and workshop, 6 October 2007, Seoul, Korea and 1 November 2007, San Francisco, CA, USA. Proteomics. 2008;8(11):2156–2159.
  • Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem. 2013;46(6):432–443.
  • Albalat A, Mischak H, Mullen W. Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics. 2011;8(5):615–629.
  • Farrah T, Deutsch EW, Omenn GS, et al. State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology- and disease-driven Human Proteome Project. J Proteome Res. 2014;13(1):60–75.
  • Katz R. Biomarkers and surrogate markers: an FDA perspective. NeuroRx. 2004;1(2):189–195.
  • Mischak H, Delles C, Vlahou A, et al. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol. 2015;11(4):221–232.
  • Santucci L, Candiano G, Petretto A, et al. From hundreds to thousands: widening the normal human urinome. Data Brief. 2014;1:25–28.
  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–13373.
  • Ammerlaan W, Trezzi J-P, Mathay C, et al. Method validation for preparing urine samples for downstream proteomic and metabolomic applications. Biopreserv Biobank. 2014;12(5):351–357.
  • Marimuthu A, O’Meally RN, Chaerkady R, et al. A comprehensive map of the human urinary proteome. J Proteome Res. 2011;10(6):2734–2743.
  • Omenn GS, States DJ, Adamski M, et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics. 2005;5(13):3226–3245.
  • Halim A, Nilsson J, Ruetschi U, et al. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Mol Cell Proteomics. 2012;11(4):M111 013649.
  • Berglund L, Bjorling E, Oksvold P, et al. A genecentric human protein atlas for expression profiles based on antibodies. Mol Cell Proteomics. 2008;7(10):2019–2027.
  • Pontén F, Jirström K, Uhlen M. The human protein atlas–a tool for pathology. J Pathol. 2008;216(4):387–393.
  • Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005;4(12):1920–1932.
  • Siwy J, Mullen W, Golovko I, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics Clin Appl. 2011;5(5–6):367–374.
  • Jupp S, Klein J, Schanstra J, et al. Developing a kidney and urinary pathway knowledge base. J Biomed Semant. 2011;2(Suppl 2):S7.
  • Adachi J, Kumar C, Zhang Y, et al. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7(9):R80.
  • Desiere F, Deutsch EW, King NL, et al. The PeptideAtlas project. Nucleic Acids Res. 2006;34(Database issue):D655–658.
  • Ternent T, Csordas A, Qi D, et al. How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics. 2014;14(20):2233–2241.
  • Li SJ, Peng M, Li H, et al. Sys-BodyFluid: a systematical database for human body fluid proteome research. Nucleic Acids Res. 2009;37(Database issue):D907–912.
  • Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20(2):363–379.
  • UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–212.
  • Kentsis A, Monigatti F, Dorff K, et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl. 2009;3(9):1052–1061.
  • Shifman MA, Li Y, Colangelo CM, et al. YPED: a web-accessible database system for protein expression analysis. J Proteome Res. 2007;6(10):4019–4024.
  • De Bono JS, Ashworth A. Translating cancer research into targeted therapeutics. Nature. 2010;467(7315):543–549.
  • Jameson JL, Longo DL. Precision medicine–personalized, problematic, and promising. N Engl J Med. 2015;372(23):2229–2234.
  • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–795.
  • Frantzi M, Latosinska A, Merseburger AS, et al. Recent progress in urinary proteome analysis for prostate cancer diagnosis and management. Expert Rev Mol Diagn. 2015;15(12):1539–1554.
  • Raimondo F, Corbetta S, Chinello C, et al. The urinary proteome and peptidome of renal cell carcinoma patients: a comparison of different techniques. Expert Rev Proteomics. 2014;11(4):503–514.
  • Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–636.
  • Kentsis A, Lin YY, Kurek K, et al. Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry. Ann Emerg Med. 2010;55(1):62–70e64.
  • Kharbanda AB, Rai AJ, Cosme Y, et al. Novel serum and urine markers for pediatric appendicitis. Acad Emerg Med. 2012;19(1):56–62.
  • Young BL, Mlamla Z, Gqamana PP, et al. The identification of tuberculosis biomarkers in human urine samples. Eur Respir J. 2014;43(6):1719–1729.
  • Castro-Sesquen YE, Gilman RH, Galdos-Cardenas G, et al. Use of a novel chagas urine nanoparticle test (chunap) for diagnosis of congenital chagas disease. PLoS Negl Trop Dis. 2014;8(10):e3211.
  • Douglas TA, Tamburro D, Fredolini C, et al. The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease. Biomaterials. 2011;32(4):1157–1166.
  • Magni R, Espina BH, Shah K, et al. Application of nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage lyme borreliosis. J Transl Med. 2015;13:346.
  • Bauça JM, Martínez-Morillo E, Diamandis EP. Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem. 2014;60(8):1052–1061.
  • Pan S, Brentnall TA, Chen R. Proteomics analysis of bodily fluids in pancreatic cancer. Proteomics. 2015;15(15):2705–2715.
  • Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008;2(4):556–570.
  • Zhang H, Aina OH, Lam KS, et al. Identification of a bladder cancer-specific ligand using a combinatorial chemistry approach. Urol Oncol. 2012;30(5):635–645.
  • Brown CE, McCarthy NS, Hughes AD, et al. Urinary proteomic biomarkers to predict cardiovascular events. Proteomics Clin Appl. 2015;9(5–6):610–617.
  • Kuznetsova T, Mischak H, Mullen W, et al. Urinary proteome analysis in hypertensive patients with left ventricular diastolic dysfunction. Eur Heart J. 2012;33(18):2342–2350.
  • Zhang ZY, Thijs L, Petit T, et al. Urinary proteome and systolic blood pressure as predictors of 5-year cardiovascular and cardiac outcomes in a general population. Hypertension. 2015;66(1):52–60.
  • Bakun M, Senatorski G, Rubel T, et al. Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction. Age (Dordr). 2014;36(1):299–311.
  • Nkuipou-Kenfack E, Bhat A, Klein J, et al. Identification of ageing-associated naturally occurring peptides in human urine. Oncotarget. 2015;6(33):34106–34117.
  • Guerrier L, Thulasiraman V, Castagna A, et al. Reducing protein concentration range of biological samples using solid-phase ligand libraries. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;833(1):33–40.
  • Shaheen SP, Levinson SS. Serum free light chain analysis may miss monoclonal light chains that urine immunofixation electrophoreses would detect. Clin Chim Acta. 2009;406(1–2):162–166.
  • Nakayama A, Kubota R, Sakatsume M, et al. Cellulose acetate membrane electrophoresis based urinary proteomics for the identification of characteristic proteins. J Clin Lab Anal. 2015;1–9. doi:10.1002/jcla.21863. [Epub ahead of print]
  • Petricoin EF 3rd, Espina V, Araujo RP, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007;67(7):3431–3440.
  • Larsen MR, Thingholm TE, Jensen ON, et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–886.
  • Li QR, Fan KX, Li RX, et al. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine. Rapid Commun Mass Spectrom. 2010;24(6):823–832.
  • Fu Q, Grote E, Zhu J, et al. An empirical approach to signature peptide choice for selected reaction monitoring: quantification of uromodulin in urine. Clin Chem. 2016;62(1):198–207.
  • Lange V, Picotti P, Domon B, et al. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222.
  • Prakash A, Rezai T, Krastins B, et al. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res. 2012;11(8):3986–3995.
  • Grant GH, Kachmar JF. The proteins of body fluids. In: Tietz NW, editor. Fundamentals of clinical chemistry. Philadelphia (PA): W.B. Saunders Copmany; 1976. p. 298–376.
  • Gudbjartsson DF, Holm H, Indridason OS, et al. Association of variants at UMOD with chronic kidney disease and kidney stones-role of age and comorbid diseases. PLoS Genet. 2010;6(7):e1001039.
  • Graham LA, Padmanabhan S, Fraser NJ, et al. Validation of uromodulin as a candidate gene for human essential hypertension. Hypertension. 2014;63(3):551–558.
  • Padmanabhan S, Melander O, Johnson T, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10):e1001177.
  • Kottgen A, Glazer NL, Dehghan A, et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat Genet. 2009;41(6):712–717.
  • Rampoldi L, Köttgen A, Devuyst O. The effect of common uromodulin variants on urinary protein level and gene transcription. Kidney Int. 2013;84(2):410–411.
  • Carty DM, Siwy J, Brennand JE, et al. Urinary proteomics for prediction of preeclampsia. Hypertension. 2011;57(3):561–569.
  • Stalmach A, Johnsson H, McInnes IB, et al. Identification of urinary peptide biomarkers associated with rheumatoid arthritis. PLoS One. 2014;9(8):e104625.
  • Muntel J, Xuan Y, Berger ST, et al. Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-orbitrap mass spectrometer. J Proteome Res. 2015;14(11):4752–4762.
  • Bruderer R, Bernhardt OM, Gandhi T, et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015;14(5):1400–1410.
  • Gillet LC, Navarro P, Tate S, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111 016717.
  • Huet G, Gouyer V, Delacour D, et al. Involvement of glycosylation in the intracellular trafficking of glycoproteins in polarized epithelial cells. Biochimie. 2003;85(3–4):323–330.
  • Bhatia PK, Mukhopadhyay A. Protein glycosylation: implications for in vivo functions and therapeutic applications. Adv Biochem Eng Biotechnol. 1999;64:155–201.
  • Pardo LA, Stühmer W. The roles of K(+) channels in cancer. Nat Rev Cancer. 2014;14(1):39–48.
  • Zhou H, Froehlich JW, Briscoe AC, et al. The GlycoFilter: a simple and comprehensive sample preparation platform for proteomics, N-glycomics and glycosylation site assignment. Mol Cell Proteomics. 2013;12(10):2981–2991.
  • Saraswat M, Joenväära S, Musante L, et al. N-linked (N-) glycoproteomics of urinary exosomes. [Corrected]. Mol Cell Proteomics. 2015;14(2):263–276.
  • Fairley JK, Owen JE, Birch DF. Protein composition of urinary casts from healthy subjects and patients with glomerulonephritis. Br Med J (Clin Res Ed). 1983;287(6408):1838–1840.
  • Mischak H, Kolch W, Aivaliotis M, et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin Appl. 2010;4(4):464–478.
  • Filip S, Vougas K, Zoidakis J, et al. Comparison of depletion strategies for the enrichment of low-abundance proteins in urine. PLoS One. 2015;10(7):e0133773.
  • Yu Y, Pieper R. Urine sample preparation in 96-well filter plates to characterize inflammatory and infectious diseases of the urinary tract. Adv Exp Med Biol. 2015;845:77–87.
  • Candiano G, Santucci L, Bruschi M, et al. “Cheek-to-cheek” urinary proteome profiling via combinatorial peptide ligand libraries: a novel, unexpected elution system. J Proteomics. 2012;75(3):796–805.
  • Köves K, Arimura A. Solid-phase adsorption method for removing undesired antibodies from polyclonal antiserum. J Histochem Cytochem. 1989;37(6):903–908.
  • Tamburro D, Fredolini C, Espina V, et al. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc. 2011;133(47):19178–19188.
  • Righetti PG, Candiano G, Citterio A, et al. Combinatorial peptide ligand libraries as a “Trojan Horse” in deep discovery proteomics. Anal Chem. 2015;87(1):293–305.
  • Righetti PG, Fasoli E, Boschetti E. Combinatorial peptide ligand libraries: the conquest of the ‘hidden proteome’ advances at great strides. Electrophoresis. 2011;32(9):960–966.
  • Vaught JB, Caboux E, Hainaut P. International efforts to develop biospecimen best practices. Cancer Epidemiol Biomarkers Prev. 2010;19(4):912–915.
  • Castagna A, Channavajjhala SK, Pizzolo F, et al. Hormone-dependent changes in female urinary proteome. Adv Exp Med Biol. 2015;845:103–120.
  • Castagna A, Olivieri O, Milli A, et al. Female urinary proteomics: new insight into exogenous and physiological hormone-dependent changes. Proteomics Clin Appl. 2011;5(5–6):343–353.
  • Froehlich JW, Vaezzadeh AR, Kirchner M, et al. An in-depth comparison of the male pediatric and adult urinary proteomes. Biochim Biophys Acta. 2014;1844(5):1044–1050.
  • Kohler M, Schanzer W, Thevis M. Effects of exercise on the urinary proteome. Adv Exp Med Biol. 2015;845:121–131.
  • Li M, Zhao M, Gao Y. Effect of transient blood glucose increases after oral glucose intake on the human urinary proteome. Proteomics Clin Appl. 2015;9(5–6):618–622.
  • Nolen BM, Orlichenko LS, Marrangoni A, et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS One. 2013;8(5):e63368.
  • Siwy J, Schanstra JP, Argiles A, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant. 2014;29(8):1563–1570.
  • Oh J, Pyo J-H, Jo E-H, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics. 2004;4(11):3485–3497.
  • States DJ, Omenn GS, Blackwell TW, et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol. 2006;24(3):333–338.
  • Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends Genet. 2013;29(10):569–574.
  • Hamerlinck FF. Neopterin: a review. Exp Dermatol. 1999;8(3):167–176.
  • Zhang M, Fu G, Lei T, et al. Two urinary peptides associated closely with type 2 diabetes mellitus. PLoS One. 2015;10(4):e0122950.
  • Shlipak MG, Matsushita K, Ärnlöv J, et al. Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med. 2013;369(10):932–943.
  • Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17(11):3139–3148.
  • Theodorescu D, Fliser D, Wittke S, et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis. 2005;26(14):2797–2808.
  • Rodrigues KT, Mekahli D, Tavares MF, et al. Development and validation of a CE-MS method for the targeted assessment of amino acids in urine. Electrophoresis. 2016;37:1039–1047.
  • Good DM, Zürbig P, Argilés A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9(11):2424–2437.
  • Boschetti E, Giorgio Righetti P. Hexapeptide combinatorial ligand libraries: the march for the detection of the low-abundance proteome continues. Biotechniques. 2008;44(5):663–665.
  • Candiano G, Dimuccio V, Bruschi M, et al. Combinatorial peptide ligand libraries for urine proteome analysis: investigation of different elution systems. Electrophoresis. 2009;30(14):2405–2411.
  • Righetti PG, Castagna A, Antonioli P, et al. Prefractionation techniques in proteome analysis: the mining tools of the third millennium. Electrophoresis. 2005;26(2):297–319.
  • Fredolini C, Meani F, Luchini A, et al. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. Aaps J. 2010;12(4):504–518.
  • Fredolini C, Tamburro D, Gambara G, et al. Nanoparticle technology: amplifying the effective sensitivity of biomarker detection to create a urine test for hGH. Drug Test Anal. 2009;1(9–10):447–454.
  • Olivieri O, Castagna A, Guarini P, et al. Urinary prostasin: a candidate marker of epithelial sodium channel activation in humans. Hypertension. 2005;46(4):683–688.
  • Guo Z, Zhang Y, Zou L, et al. A proteomic analysis of individual and gender variations in normal human urine and cerebrospinal fluid using iTRAQ quantification. PLoS One. 2015;10(7):e0133270.
  • Santucci L, Candiano G, Bruschi M, et al. Combinatorial peptide ligand libraries for the analysis of low-expression proteins: validation for normal urine and definition of a first protein MAP. Proteomics. 2012;12(4–5):509–515.
  • Santucci L, Candiano G, Petretto A, et al. Combinatorial ligand libraries as a two-dimensional method for proteome analysis. J Chromatogr A. 2013;1297:106–112.
  • Fonslow BR, Carvalho PC, Academia K, et al. Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT. J Proteome Res. 2011;10(8):3690–3700.
  • Meng R, Gormley M, Bhat VB, et al. Low abundance protein enrichment for discovery of candidate plasma protein biomarkers for early detection of breast cancer. J Proteomics. 2011;75(2):366–374.
  • Drabkin DL. The normal pigment of the urine: I. The relationship of urinary pigment output to diet and metabolism. J Biol Chem. 1927;75:443–479.
  • Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm. 2015;97(Pt B):338–349.
  • Patanarut A, Luchini A, Botterell PJ, et al. Synthesis and characterization of hydrogel particles containing cibacron blue F3G-A. Colloids Surf A Physicochem Eng Asp. 2010;362(1–3):8–19.
  • Luchini A, Fredolini C, Espina BH, et al. Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. Curr Mol Med. 2010;10(2):133–141.
  • Magni R, Espina BH, Liotta LA, et al. Hydrogel nanoparticle harvesting of plasma or urine for detecting low abundance proteins. J Vis Exp. 2014;90:e51789.
  • Fredolini C, Meani F, Reeder KA, et al. Concentration and preservation of very low abundance biomarkers in urine, such as human growth hormone (hGH), by cibacron blue F3G-A loaded hydrogel particles. Nano Res. 2008;1(6):502–518.
  • Luchini A, Tamburro D, Magni R, et al. Application of analyte harvesting nanoparticle technology to the measurement of urinary HGH in healthy individuals. J Sports Med Doping Stud. 2012;2(6):e127.
  • Pleitez M, Von Lilienfeld-Toal H, Mäntele W. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): establishing a new approach to non invasive glucose measurement. Spectrochim Acta A Mol Biomol Spectrosc. 2012;85(1):61–65.
  • Nathan DM, Singer DE, Hurxthal K, et al. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med. 1984;310(6):341–346.
  • FDA-NIH Biomarker Working Group F-NBW: BEST (Biomarkers, EndpointS, and other Tools). Bethesda (MD): Food and Drug Administration (US)/National Institutes of Health (US); (2016).
  • Lowenthal MS, Mehta AI, Frogale K, et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem. 2005;51(10):1933–1945.
  • Wronska DB, Krajewska M, Lygina N, et al. Peptide-conjugated glass slides for selective capture and purification of diagnostic cells: applications in urine cytology. Biotechniques. 2014;57(2):63–71.
  • Clinical Laboratory Standards Institute. GP16-A3 urinalysis; approvide guideline-third edition. Vol. 56; Wayne (PA); Clinical Laboratory Standards Institute; 2009.
  • Clinical Laboratory Standards Institute. C62-A liquid chromatography-mass spectrometry methods, approved guidelines. Vol. 88. Wayne (PA); Clinical Laboratory Standards Institute; 2014.
  • Coskun AF, Nagi R, Sadeghi K, et al. Albumin testing in urine using a smart-phone. Lab Chip. 2013;13(21):4231–4238.
  • Wang S, Zhao X, Khimji I, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–3418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.