449
Views
12
CrossRef citations to date
0
Altmetric
Review

Proteomics of Plasmodium vivax malaria: new insights, progress and potential

, , , , , , & show all
Pages 771-782 | Received 21 May 2016, Accepted 05 Jul 2016, Published online: 29 Jul 2016

References

  • Gupta H, Dhunputh P, Bhatt AN, et al. Cerebral malaria in a man with Plasmodium vivax mono-infection: a case report. Trop Doct. 2016;0049475515624857. [Epub ahead of print]
  • Rahimi BA, Thakkinstian A, White NJ, et al. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481. .
  • Nadkar MY, Huchche AM, Singh R, et al. Clinical profile of severe Plasmodium vivax malaria in a tertiary care centre in Mumbai from June 2010-January 2011. J Assoc Physicians India. 2012;60:11–13.
  • WHO. World Malaria Report, 2015 [Internet]. Available from: http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1.
  • Carlton JM, Adams JH, Silva JC, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008;455(7214):757–763. .
  • Miller LH, Mason SJ, Clyde DF, et al. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976;295(6):302–304.
  • Mendes C, Dias F, Figueiredo J, et al. Duffy negative antigen is no longer a barrier to Plasmodium vivax–molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis. 2011;5(6):e1192.
  • Ngassa Mbenda HG, Das A. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians. PloS One. 2014;9(8):e103262.
  • Mueller I, Galinski MR, Baird JK, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9(9):555–566. .
  • Bernabeu M, Lopez FJ, Ferrer M, et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol. 2012;14(3):386–400.
  • Marín-Menéndez A, Bardají A, Martínez-Espinosa FE, et al. Rosetting in Plasmodium vivax: a cytoadhesion phenotype associated with anaemia. PLoS Negl Trop Dis. 2013;7(4):e2155.
  • Baird JK. Neglect of Plasmodium vivax malaria. Trends Parasitol. 2007;23(11):533–539.
  • Florens L, Washburn MP, Raine JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419(6906):520–526.
  • Roch KGL, Johnson JR, Florens L, et al. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004;14(11):2308–2318.
  • Oehring SC, Woodcroft BJ, Moes S, et al. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol. 2012;13(11):R108.
  • Reamtong O, Srimuang K, Saralamba N, et al. Protein profiling of mefloquine resistant Plasmodium falciparum using mass spectrometry-based proteomics. Int J Mass Spectrom. 2015;391:82–92.
  • Cobbold SA, Santos JM, Ochoa A, et al. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite. Sci Rep. 2016;6:19722.
  • Ray S, Kamath KS, Srivastava R, et al. Serum proteome analysis of vivax malaria: an insight into the disease pathogenesis and host immune response. J Proteomics. 2012;75(10):3063–3080. .
  • Bachmann J, Burté F, Pramana S, et al. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014;10(4):e1004038.
  • Swearingen KE, Lindner SE, Shi L, et al. Interrogating the plasmodium sporozoite surface: identification of surface-exposed proteins and demonstration of glycosylation on CSP and TRAP by mass spectrometry-based proteomics. PLoS Pathog [Internet]. 2016;12(4). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851412/.
  • Mata-Cantero L, Azkargorta M, Aillet F, et al. New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteomics. 2016;139:45–59.
  • Mallela AR, Hariprasad S, Koya R, et al. Spontaneous subdural haemorrhage: a rare association with Plasmodium Vivax malaria. J Clin Diagn Res JCDR. 2016;10(1):OD05–OD06.
  • Lacerda MVG, Fragoso SCP, Alecrim MGC, et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis. 2012;55(8):e67–e74.
  • Antony HA, Parija SC. Antimalarial drug resistance: an overview. Trop Parasitol. 2016;6(1):30–41.
  • Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine? Lancet Lond Engl. 1989;2(8673):1183–1184.
  • Baird JK, Basri H, Purnomo, et al. Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia. Am J Trop Med Hyg. 1991; 44(5):547–552. .
  • Baird JK. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother. 2004;48(11):4075–4083. .
  • Nomura T, Carlton JM, Baird JK, et al. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis. 2001;183(11):1653–1661.
  • Beeson JG, Chu CS, Richards JS, et al. Plasmodium vivax malaria: challenges in diagnosis, treatment and elimination. Pediatr Infect Dis J. 2015;34(5):529–531. .
  • Ashley EA, Recht J, White NJ. Primaquine: the risks and the benefits. Malar J [Internet]. 2014;13:418. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230503/.
  • Collins WE, Jeffery GM. Primaquine resistance in Plasmodium vivax. Am J Trop Med Hyg. 1996;55(3):243–249.
  • Baird JK. Point-of-care G6PD diagnostics for Plasmodium vivax malaria is a clinical and public health urgency. BMC Med. 2015;13:296.
  • Zakeri S, Motmaen SR, Afsharpad M, et al. Molecular characterization of antifolates resistance-associated genes, (dhfr and dhps) in Plasmodium vivax isolates from the Middle East. Malar J. 2009;8:20.
  • Young MD, Burgess RW. Pyrimethamine resistance in Plasmodium vivax malaria. Bull World Health Organ. 1959;20(1):27–36.
  • Hawkins VN, Joshi H, Rungsihirunrat K, et al. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol. 2007;23(5):213–222.
  • Douglas NM, Anstey NM, Angus BJ, et al. Artemisinin combination therapy for vivax malaria? Lancet Infect Dis. 2010;10(6):405–416.
  • Harijanto PN. Malaria treatment by using artemisinin in Indonesia. Acta Medica Indones. 2010;42(1):51–56.
  • Nelwan EJ, Ekawati LL, Tjahjono B, et al. Randomized trial of primaquine hypnozoitocidal efficacy when administered with artemisinin-combined blood schizontocides for radical cure of Plasmodium vivax in Indonesia. BMC Med. 2015;13:294.
  • Gardner MJ, Hall N, Fung E, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906):498–511.
  • Luo Z, Sullivan SA, Carlton JM. The biology of Plasmodium vivax explored through genomics. Ann N Y Acad Sci. 2015;1342:53–61.
  • Delgado-Ratto C, Gamboa D, Soto-Calle VE, et al. Population genetics of Plasmodium vivax in the peruvian Amazon. PLoS Negl Trop Dis. 2016;10(1):e0004376.
  • Barry AE, Waltmann A, Koepfli C, et al. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health. 2015;109(3):142–152.
  • Flannery EL, Wang T, Akbari A, et al. Next-generation sequencing of plasmodium vivax patient samples shows evidence of direct evolution in drug-resistance genes. ACS Infect Dis. 2015;1(8):367–379.
  • Jang JW, Yun SG, Woo M-K, et al. Sequence polymorphisms of Plasmodium vivax tryptophan and alanine rich antigen (PvTARAg55). Acta Trop. 2015;142:122–126.
  • Chenet SM, Tapia LL, Escalante AA, et al. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malar J. 2012;11:68.
  • Bozdech Z, Mok S, Hu G, et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci USA. 2008;105(42):16290–16295.
  • Westenberger SJ, McClean CM, Chattopadhyay R, et al. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl Trop Dis. 2010;4(4):e653.
  • Sims PF, Hyde JE. Proteomics of the human malaria parasite Plasmodium falciparum. Expert Rev Proteomics. 2006;3(1):87–95.
  • Ray S, Reddy PJ, Jain R, et al. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics. 2011;11(11):2139–2161. .
  • Ray S, Patel SK, Kumar V, et al. Differential expression of serum/plasma proteins in various infectious diseases: specific or nonspecific signatures. Proteomics Clin Appl. 2014;8(1–2):53–72.
  • Burté F, Brown BJ, Orimadegun AE, et al. Severe childhood malaria syndromes defined by plasma proteome profiles. PLoS One. 2012;7(12):e49778.
  • Gitau EN, Kokwaro GO, Karanja H, et al. Plasma and cerebrospinal proteomes from children with cerebral malaria differ from those of children with other encephalopathies. J Infect Dis. 2013;208(9):1494–1503.
  • Kassa FA, Shio MT, Bellemare M-J, et al. New inflammation-related biomarkers during malaria infection. PLoS One. 2011;6(10):e26495.
  • Ray S, Kumar V, Bhave A, et al. Proteomic analysis of Plasmodium falciparum induced alterations in humans from different endemic regions of India to decipher malaria pathogenesis and identify surrogate markers of severity. J. Proteomics. 2015;127(Pt A):103–113.
  • Andrade BB, Reis-Filho A, Souza-Neto SM, et al. Plasma superoxide dismutase-1 as a surrogate marker of vivax malaria severity. PLoS Negl Trop Dis. 2010;4(4):e650.
  • Bahk YY, Na B-K, Cho S-H, et al. Proteomic analysis of haptoglobin and amyloid A protein levels in patients with vivax malaria. Korean J Parasitol. 2010;48(3):203–211.
  • Ray S, Renu D, Srivastava R, et al. Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers. PLoS One. 2012;7(8):e41751.
  • Ray S, Patel SK, Venkatesh A, et al. Clinicopathological analysis and multipronged quantitative proteomics reveal oxidative stress and cytoskeletal proteins as possible markers for severe vivax malaria. Sci Rep. 2016;6:24557. .
  • Panichakul T, Ponnikorn S, Roytrakul S, et al. Plasmodium vivax inhibits erythroid cell growth through altered phosphorylation of the cytoskeletal protein ezrin. Malar J. 2015;14:138.
  • Lasonder E, Ishihama Y, Andersen JS, et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002;419(6906):537–542.
  • Udomsangpetch R, Somsri S, Panichakul T, et al. Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int. 2007;56(1):65–69. .
  • Acharya P, Pallavi R, Chandran S, et al. A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax. Proteomics Clin Appl. 2009;3(11):1314–1325. .
  • Acharya P, Pallavi R, Chandran S, et al. clinical proteomics of the neglected human malarial parasite Plasmodium vivax. PLoS One [Internet]. 2011;6(10). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197670/. .
  • Roobsoong W, Roytrakul S, Sattabongkot J, et al. Determination of the Plasmodium vivax schizont stage proteome. J Proteomics. 1701–1710;74(9):2011. .
  • Galinski MR, Barnwell JW. Non-human primate model for human malaria research. In: Nonhuman primates in biomedical research. Boston (MA): Academic Press; 2012. p. 299–323.
  • Langhorne J, Buffet P, Galinski M, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.
  • Craig AG, Grau GE, Janse C, et al.. The role of animal models for research on severe malaria. PLoS Pathog [Internet]. 2012;8(2):e1002401. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271056/.
  • Moreno-Pérez DA, Dégano R, Ibarrola N, et al. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics. 2014;113C:268–280. .
  • Anderson DC, Lapp SA, Akinyi S, et al. Plasmodium vivax trophozoite-stage proteomes. J Proteomics. 2015;115:157–176. .
  • Lu F, Li J, Wang B, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics. 2014;102:66–82. .
  • Chen J-H, Chen S-B, Wang Y, et al. An immunomics approach for the analysis of natural antibody responses to Plasmodium vivax infection. Mol Biosyst. 2015;11(8):2354–2363. .
  • Baum E, Sattabongkot J, Sirichaisinthop J, et al. Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J. 2015;14:95. .
  • Snounou G, Viriyakosol S, Jarra W, et al. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol. 1993;58(2):283–292.
  • Shanks GD. Control and elimination of Plasmodium vivax. Adv Parasitol. 2012;80:301–341.
  • Tsuboi T, Takeo S, Arumugam TU, et al. The wheat germ cell-free protein synthesis system: a key tool for novel malaria vaccine candidate discovery. Acta Trop. 2010;114(3):171–176. .
  • Arévalo-Herrera M, Lopez-Perez M, Dotsey E, et al. Antibody profiling in Naïve and semi-immune individuals experimentally challenged with Plasmodium vivax sporozoites. PLoS Negl Trop Dis. 2016;10(3):e0004563. .
  • Molina DM, Finney OC, Arevalo-Herrera M, et al. Plasmodium vivax pre-erythrocytic–stage antigen discovery: exploiting naturally acquired humoral responses. Am J Trop Med Hyg. 2012;87(3):460–469. .
  • Genton B, D’Acremont V, Rare L, et al. Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008;5(6):e127.
  • Price RN, Tjitra E, Guerra CA, et al. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.