1,040
Views
11
CrossRef citations to date
0
Altmetric
Review

Recent progress in protein-protein interaction study for EGFR-targeted therapeutics

&
Pages 817-832 | Received 28 Apr 2016, Accepted 08 Jul 2016, Published online: 29 Jul 2016

References

  • Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–1134.
  • Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.
  • Roskoski R. ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol Res. 2014;87:42–59.
  • Ullrich A, Coussens L, Hayflick J, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309(5967):418–425.
  • Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110(6):775–787.
  • Arkhipov A, Shan Y, Das R, et al.. Architecture and Membrane Interactions of the EGF Receptor. Cell. 2013;152(3):557–569.
  • Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–354.
  • Bessman NJ, Bagchi A, Ferguson KM, et al. Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep. 2014;9(4):1306–1317.
  • Burgess AW, Cho H, Eigenbrot C, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell. 2003;12(3):541–552.
  • Ferguson KM, Berger MB, Mendrola JM, et al. EGF activates its receptor by removing interactions that Autoinhibit Ectodomain Dimerization. Mol Cell. 2003;11:507–517.
  • Chung I, Akita R, Vandlen R, et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature. 2010;464(7289):783–787.
  • Arkhipov A, Shan Y, Das R, et al. Architecture and membrane interactions of the EGF receptor. Cell. 2013;152(3):557–569.
  • Liu P, Cleveland TE, Bouyain S, et al. A single ligand is sufficient to activate EGFR dimers. Proc Natl Acad Sci. 2012;109(27):10861–10866.
  • Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 2002;110(6):669–672.
  • Jura N, Zhang X, Endres NF, et al. Catalytic control in the EGF receptor and its connection to general Kinase regulatory mechanisms. Mol Cell. 2011;42(1):9–22.
  • Jura N, Shan Y, Cao X, et al. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A. 2009;106(51):21608–21613.
  • Wilson KJ, Gilmore JL, Foley J, et al. Functional selectivity of EGF family peptide growth factors: Implications for cancer. Pharmacol Ther. 2009;122(1):1–8.
  • Endres NF, Das R, Smith AW, et al.. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell. 2013;152(3):543–556.
  • Jura N, Endres NF, Engel K, et al. Mechanism for activation of the EGF receptor catalytic domain by the Juxtamembrane segment. Cell. 2009;137(7):1293–1307.
  • Doerner A, Scheck R, Schepartz A. Growth factor identity is encoded by discrete coiled-coil rotamers in the EGFR Juxtamembrane region. Chem Biol. 2015;22(6):776–784.
  • Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–137.
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–562.
  • Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.
  • Kadamur G, Ross EM. Mammalian phospholipase C. Annu Rev Physiol. 2013;75:127–154.
  • Haj A, Van Zoelen EJJ, Van Leeuwen JEM. Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem. 2003;278(37):35781–35790.
  • Polo S. Signaling-mediated control of ubiquitin ligases in endocytosis. BMC Biol. 2012;10(25):1–9.
  • Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res. 2003;284:2–13.
  • Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43.
  • Fischer OM, Hart S, Gschwind A, et al. EGFR signal transactivation in cancer cells. Biochem Soc Trans. 2003;31:1203–1208.
  • Friedländer E, Barok M, Szöllosi J, et al. ErbB-directed immunotherapy: antibodies in current practice and promising new agents. Immunol Lett. 2008;116(2):126–140.
  • Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37:S9–S15.
  • Hutchinson RA, Adams RA, McArt DG, et al. Epidermal growth factor receptor immunohistochemistry: new opportunities in metastatic colorectal cancer. J Transl Med. 2015;13(217):1–11.
  • FDA and EMA drug information. 2016. http://www.cancer.gov/about-cancer/treatment/drugs/cetuximab http://www.cancer.gov/about-cancer/treatment/drugs/panitumumab http://www.cancer.gov/about-cancer/treatment/drugs/necitumumab http://www.ema.europa.eu/ema/
  • Masui H, Kawamoto T, Sato JD, et al. Growth inhibition of human tumor cells in athymic mice by anti- epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1984;44(3):1002–1007.
  • Li S, Schmitz KR, Jeffrey PD, et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7(4):301–311.
  • Rocha-Lima CM, Soares HP, Raez LE, et al. Special report EGFR targeting of solid tumors. Cancer Control. 1998;2:295–304.
  • Schmiedel J, Blaukat A, Li S, et al. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell. 2008;13(4):365–373.
  • Yang X, Jia X, Corvalan JRF, et al. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant hemotherapy eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor w. Cancer Res. 1999;15(59):1236–1243.
  • Haigler H, Ash JF, Singer SJ, et al. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A. 1978;75(7):3317–3321.
  • Yang XD, Jia XC, Corvalan JRF, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol. 2001;38(1):17–23.
  • Li S, Kussie P, Ferguson KM. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8. Structure. 2008;16(2):216–227.
  • Kenanova V, Olafsen T, Crow DM, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 2005;65(2):622–631.
  • Shah DK. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics. J Pharmacokinet Pharmacodyn. 2015;42(5):553–571.
  • Pack P, Müller K, Zahn R, et al. Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J Mol Biol. 1995;246(1):28–34.
  • Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–1136.
  • Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77–83.
  • Omidfar K, Shirvani Z. Single domain antibodies: a new concept for epidermal growth factor receptor and EGFRvIII targeting. DNA Cell Biol. 2012;31(6):1015–1026.
  • Farajnia S, Ahmadzadeh V, Tanomand A, et al. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol. 2014;36(5):297–308.
  • Trejtnar F, Laznicek M. Analysis of renal handling of radiopharmaceuticals. Q J Nucl Med. 2002;46(3):181–194.
  • Müller KM, Arndt KM, Plückthun A. A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 1998;432(1–2):45–49.
  • Müller KM, Arndt KM, Strittmatter W, et al. The first constant domain (C(H)1 and C(L)) of an antibody used as heterodimerization domain for bispecific miniantibodies. FEBS Lett. 1998;422(2):259–264.
  • Lutterbuese R, Raum T, Kischel R, et al.. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci U S. 2010;107(28):12605–12610.
  • Bostrom J, Yu S-F, Kan D, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science. 2009;323(5921):1610–1614.
  • Schaefer G, Haber L, Crocker LM, et al.. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell. 2011;20(4):472–486.
  • Brezski RJ, Georgiou G. Immunoglobulin isotype knowledge and application to Fc engineering. Curr Opin Immunol. 2016 May;40:62–69.
  • Liu G, Tu D, Lewis M, et al. Fc-γ receptor polymorphisms, cetuximab therapy, and survival in the NCIC CTG CO.17 trial of colorectal cancer. Clin Cancer Res. 2016;22(10):2435–2444.
  • Akash MSH, Rehman K, Parveen A, et al. Antibody-drug conjugates as drug carrier systems for bioactive agents. Int J Polym Mater Polym Biomater. 2016;65(1):1–10.
  • Chari RVJ, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed. 2014;53(15):3796–3827.
  • Kim EG, Kim KM. Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol Ther. 2015;23(6):493–509.
  • Koefoed K, Steinaa L, Søderberg JN, et al. Rational identification of an optimal antibody mixture for targeting the epidermal growth factor receptor. MAbs. 2011;3(6):584–595.
  • Kearns JD, Bukhalid R, Sevecka M, et al. Enhanced targeting of the EGFR network with MM-151, an oligoclonal anti-EGFR antibody therapeutic. Mol Cancer Ther. 2015;14(7):1625–1636.
  • Arena S, Siravegna G, Mussolin B, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med. 2016;8(324ra14):1–10.
  • Main ERG, Lowe AR, Mochrie SGJ, et al. A recurring theme in protein engineering: the design, stability and folding of repeat proteins. Curr Opin Struct Biol. 2005;15(4):464–471.
  • Plückthun A. Designed Ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489–511.
  • Forrer P, Stumpp MT, Binz HK, et al. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett. 2003;539(13):2–6.
  • Interlandi G, Wetzel SK, Settanni G, et al. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments. J Mol Biol. 2008;375(3):837–854.
  • Steiner D, Forrer P, Plückthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol. 2008;382(5):1211–1227.
  • Boersma YL, Chao G, Steiner D, et al. Bispecific designed ankyrin repeat proteins (DARPins) targeting epidermal growth factor receptor inhibit A431 cell proliferation and receptor recycling. J Biol Chem. 2011;286(48):41273–41285.
  • Boersma YL, Plückthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol. 2011;22(6):849–857.
  • Enkhbayar P, Kamiya M, Osaki M, et al. Structural principles of leucine-rich repeat (LRR) proteins. Proteins Struct Funct Bioinform. 2004;54(3):394–403.
  • Lee S-CS-G, Park K, Han J, et al. Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc Natl Acad Sci. 2012;109(9):3299–3304.
  • Lee -J-J, Choi H-J, Yun M, et al.. Enzymatic prenylation and oxime ligation for the synthesis of stable and homogeneous protein-drug conjugates for targeted therapy. Angew Chem Int Ed. 2015;54(41):12020–12024.
  • Sihver W, Pietzsch J, Krause M, et al. Radiolabeled cetuximab conjugates for EGFR targeted cancer diagnostics and therapy. Pharmaceuticals. 2014;7(3):311–338.
  • Cuartero-Plaza A, Mart??nez-Miralles E, Rosell R, et al. Radiolocalization of squamous lung carcinoma with 131I-labeled epidermal growth factor. Clin Cancer Res. 1996;2(1):13–20.
  • Friedman M, Nordberg E, Hoiden-Guthenberg I, et al. Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel. 2007;20(4):189–199.
  • Löfblom J, Frejd FY, Ståhl S. Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol. 2011;22(6):843–848.
  • Justino CIL, Duarte AC, Rocha-Santos TAP. Analytical applications of affibodies. TrAC Trends Anal Chem. 2015;65:73–82.
  • Tolmachev V, Rosik D, Wållberg H, et al. Imaging of EGFR expression in murine xenografts using site-specifically labelled anti-EGFR 111In-DOTA-Z EGFR:2377 Affibody molecule: aspect of the injected tracer amount. Eur J Nucl Med Mol Imaging. 2010;37(3):613–622.
  • Dickinson CD, Veerapandian B, Dai X-P, et al. Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol. 1994;236(4):1079–1092.
  • Main AL, Harvey TS, Baron M, et al. The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell. 1992;71(4):671–678.
  • Koide A, Bailey CW, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol. 1998;284(4):1141–1151.
  • Hackel BJ, Ackerman ME, Howland SW, et al. Stability and CDR composition biases Enrich binder functionality landscapes. J Mol Biol. 2010;401(1):84–96.
  • Emanuel SL, Engle LJ, Chao G, et al. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor. MAbs. 2011;3(1):38–48.
  • Ramamurthy V, Krystek SR, Bush A, et al.. Structures of adnectin/protein complexes reveal an expanded binding footprint. Structure. 2012;20(2):259–269.
  • Hackel BJ, Kimura RH, Gambhir SS. Use of 64Cu-labeled fibronectin domain with EGFR- overexpressing tumor xenograft: molecular imaging. Radiology. 2012;263(1):179–188.
  • Yan Y, Chen G, Wei H, et al.. Fast Photochemical Oxidation of Proteins (FPOP) maps the epitope of EGFR binding to Adnectin. J Am Soc Mass Spectrom. 2014;25(12):2084–2092.
  • Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther. 2005;5(1):111–124.
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, et al. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 1997;414(3):521–526.
  • Kijanka M, Dorresteijn B, Oliveira S, et al. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond). 2015;10(1):161–174.
  • Roovers RC, Laeremans T, Huang L, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother. 2007;56(3):303–317.
  • Schmitz KR, Bagchi A, Roovers RC, et al.. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure. 2013;21(7):1214–1224.
  • Roovers RC, Vosjan MJWD, Laeremans T, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer. 2011;129(8):2013–2024.
  • Heukers R, Vermeulen JF, Fereidouni F, et al. Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif. J Cell Sci. 2013;126(21):4900–4912.
  • Van Der Meel R, Oliveira S, Altintas I, et al. Tumor-targeted Nanobullets: anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment. J Control Release. 2012;159(2):281–289.
  • Oliveira S, Schiffelers RM, Van Der Veeken J, et al. Downregulation of EGFR by a novel multivalent nanobody-liposome platform. J Control Release. 2010;145(2):165–175.
  • Li Z, Zhao R, Wu X, et al. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. Faseb J. 2005;19(14):1978–1985.
  • Nakamura T, Takasugi H, Aizawa T, et al. Peptide mimics of epidermal growth factor (EGF) with antagonistic activity. J Biotechnol. 2005;116(3):211–219.
  • Song S, Liu D, Peng J, et al. Novel peptide ligand directs liposomes toward EGF-R high-expressing cancer cells in vitro and in vivo. Faseb J. 2009;23:1396–1404.
  • Mizuguchi T, Ohara N, Iida M, et al.. Evaluation of dimerization-inhibitory activities of cyclic peptides containing a β-hairpin loop sequence of the EGF receptor. Bioorg Med Chem. 2012;20(19):5730–5737.
  • Hanold LE, Oruganty K, Ton NT, et al. Inhibiting EGFR dimerization using triazolyl-bridged dimerization arm mimics. PLoS One. 2015;10(3):e0118796.
  • Ahsan A, Ray D, Ramanand SG, et al. Destabilization of the epidermal growth factor receptor (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and receptor dimerization. J Biol Chem. 2013;288(37):26879–26886.
  • Collet G, Grillon C, Nadim M, et al. Trojan horse at cellular level for tumor gene therapies. Gene. 2013;525(2):208–216.
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2(1):18–29.
  • Altintas I, Heukers R, Van Der Meel R, et al. Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. J Control Release. 2013;165(2):110–118.
  • Li W, Liu Z, Li C, et al. Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J Cancer Res Clin Oncol. 2016;142(3):619–632.
  • Mamot C, Drummond DC, Greiser U, et al.. Epidermal Growth Factor Receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res. Control. 2003;63(12):3154–3161.
  • Hagen S, Baumann T, Wagner HJ, et al. Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy. Sci Rep. 2014;4:3759.
  • Conner J, Braidwood L, Brown SM. A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther. 2008;15(24):1579–1592.
  • Piao Y, Jiang H, Alemany R, et al. Oncolytic adenovirus retargeted to Delta-EGFR induces selective antiglioma activity. Cancer Gene Ther. 2009;16(3):256–265.
  • Verheije MH, Lamfers MLM, Würdinger T, et al. Coronavirus genetically redirected to the epidermal growth factor receptor exhibits effective antitumor activity against a malignant glioblastoma. J Virol. 2009;83(15):7507–7516.
  • Goldstein NI, Prewett M, Zuklys K, et al. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1995;1(11):1311–1318.
  • Mateo C, Moreno E, Amour K, et al. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997;3(1):71–81.
  • Bleeker WK, Van Bueren JJ, Van Ojik HH, et al. Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol. 2004;173(7):4699–4707.
  • Murthy U, Basu A, Rodeck U, et al. Binding of an antagonistic monoclonal antibody to an intact and fragmented EGF-receptor polypeptide. Arch Biochem Biophys. 1987;252(2):549–560.
  • Wersäll P, Ohlsson I, Biberfeld P, et al. Intratumoral infusion of the monoclonal antibody, mAb 425, against the epidermal-growth-factor receptor in patients with advanced malignant glioma. Cancer Immunol Immunother. 1997;44(3):157–164.
  • Kettleborough CA, Saldanha J, Heath VJ, et al. Humanization of a mouse monoclonal antibody by CDR-grafting: the importance of framework residues on loop conformation. Protein Eng. 1991;4(7):773–783.
  • Dean C, Modjtahedi H, Eccles S, et al. Immunotherapy with antibodies to the EGF receptor. Int J Cancer Suppl. 1994;8:103–107.
  • Gerdes CA, Nicolini VG, Herter S, et al. GA201 (RG7160): a novel, humanized, glycoengineered anti - EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin Cancer Res. 2013;19(5):1126–1138.
  • Panousis C, Rayzman VM, Johns TG, et al. Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumours expressing de2-7 EGFR or amplified EGFR. Br J Cancer. 2005;92(6):1069–1077.
  • Phillips AC, Boghaert ER, Vaidya KS, et al. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol Cancer Ther. 2016;128(2):438–445.
  • Zalutsky MR, Boskovitz A, Kuan CT, et al. Radioimmunotargeting of malignant glioma by monoclonal antibody D2C7 reactive against both wild-type and variant III mutant epidermal growth factor receptors. Nucl Med Biol. 2012;39(1):23–34.
  • Chandramohan V, Bao X, Keir ST, et al. Construction of an immunotoxin, D2C7-(scdsFv)-PE38KDEL, targeting EGFRwt and EGFRvIII for brain tumor therapy. Clin Cancer Res. 2013;19(17):4717–4727.
  • Winkler ME, O’Connor L, Winget M, et al. Epidermal growth factor and transforming growth factor alpha bind differently to the epidermal growth factor receptor. Biochemistry. 1989;28(15):6373–6378.
  • Chao G, Cochran JR, Dane Wittrup K. Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol. 2004;342(2):539–550.
  • Gool HC, Hounsell EF, Lax I, et al. The carbohydrate specificities of the monoclonal antibodies 29.1, 445 and 3C1B12 to the epidermal growth factor receptor of A431 cells. Biosci Rep. 1985;5(1):83–94.
  • Lorimer IA, Keppler-Hafkemeyer A, Beers RA, et al. Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc Natl Acad Sci U S A. 1996;93(25):14815–14820.
  • Huang L, Gainkam LOT, Caveliers V, et al. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10(3):167–175.
  • Nevoltris D, Lombard B, Dupuis E, et al. Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers. ACS Nano. 2015;9(2):1388–1399.
  • Friedman M, Orlova A, Johansson E, et al. Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J Mol Biol. 2008;376(5):1388–1402.
  • Hackel BJ, Sathirachinda A, Gambhir SS. Designed hydrophilic and charge mutations of the fibronectin domain: towards tailored protein biodistribution. Protein Eng Des Selection. 2012;25(10):639–647.
  • Fury MG, Lipton A, Smith KM, et al. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother. 2008;57(2):155–163.
  • Lu D, Zhang H, Ludwig D, et al. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem. 2004;279(4):2856–2865.
  • Lu D, Zhang H, Koo H, et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem. 2005;280(20):19665–19672.
  • Choi BD, Kuan C-T, Cai M, et al. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proc Natl Acad Sci U S A. 2013;110(1):270–275.
  • Castoldi R, Ecker V, Wiehle L, et al. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene. 2013;32(50):5593–5601.
  • Lee JM, Lee SH, Hwang J-W, et al.. Novel strategy for a bispecific antibody: induction of dual target internalization and degradation. Oncogene. 2016;1–10. [Epub ahead of print].
  • Hu S, Fu W, Xu W, et al.. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res. 2015;75(1):159–170.
  • Reusch U, Sundaram M, Davol PA, et al. Anti-CD3 x anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin Cancer Res. 2006;12(1):183–190.
  • Zitron IM, Thakur A, Norkina O, et al. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies. BMC Cancer. 2013;13(83):1–14.
  • Von MB, Thakur M, Weng A, et al. Dianthin-EGF is an effective tumor targeted toxin in combination with saponins in a xenograft model for colon carcinoma. Futur Oncol. 2014;10(14):2161–2175.
  • Li J, Chen L, Liu N, et al. EGF-coated nano-dendriplexes for tumor-targeted nucleic acid delivery in vivo. Drug Deliv. 2016;23(5):1718–1725.
  • Li X, Qiu L, Zhu P, et al. Epidermal growth factor-ferritin H-chain protein nanoparticles for tumor active targeting. Small. 2012;8(16):2505–2514.
  • Hanold LE, Watkins CP, Ton NT, et al. Design of a selenylsulfide-bridged EGFR dimerization arm mimic. Bioorg Med Chem. 2015;23(12):2761–2766.
  • Xu R, Povlsen GK, Soroka V, et al. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo. Cell Oncol. 2010;32(4):259–274.
  • Mizuguchi T, Uchimura H, Kakizawa T, et al. Inhibitory effect of a dimerization-arm-mimetic peptide on EGF receptor activation. Bioorganic Med Chem Lett. 2009;19(12):3279–3282.
  • Liu W-J, Liu X-J, Li L, et al. Tuftsin-based, EGFR-targeting fusion protein and its enediyne-energized analog show high antitumor efficacy associated with CD47 down-regulation. Cancer Immunol Immunother. 2014;63(12):1261–1272.
  • Campa MJ, Kuan C-T, O’Connor-McCourt MD, et al. Design of a novel small peptide targeted against a tumor-specific receptor. Biochem Biophys Res Commun. 2000;275(2):631–636.
  • Cardó-Vila M, Giordano RJ, Sidman RL, et al. From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway. Proc Natl Acad Sci U S A. 2010;107(11):5118–5123.
  • Guardiola S, Díaz-Lobo M, Seco J, et al.. Peptides targeting EGF block the EGF-EGFR interaction. Chembiochem. 2015. doi:10.1002/cb.
  • Yu Y, Rishi AK, Turner JR, et al. Cloning of a novel EGFR-related peptide: a putative negative regulator of EGFR. Am J Physiol Cell Physiol. 2001;280(5):C1083–C1089.
  • Hagen S, Baumann T, Wagner HJ, et al. Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy. Sci Rep. 2014;4(3759):1–11.
  • Nakamura T, Peng K-W, Harvey M, et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol. 2005;23(2):209–214.
  • Watkins SJ, Mesyanzhinov VV, Kurochkina LP, et al. The “adenobody” approach to viral targeting: specific and enhanced adenoviral gene delivery. Gene Ther. 1997;4(10):1004–1012.
  • Hemminki A, Dmitriev I, Liu B, et al. Targeting oncolytic adenoviral agents to the epidermal growth factor pathway with a secretory fusion molecule. Cancer Res. 2001;61(17):6377–6381.
  • Dreier B, Honegger A, Hess C, et al.. Development of a generic adenovirus delivery system based on structure-guided design of bispecific trimeric DARPin adapters. Proc Natl Acad Sci U S A. 2013;110(10):E869–E877.
  • Dai H-S, Liu Z, Jiang W, et al. Directed evolution of a virus exclusively utilizing human epidermal growth factor receptor as the entry receptor. J Virol. 2013;87(20):11231–11243.
  • Uusi-Kerttula H, Legut M, Davies J, et al. Incorporation of peptides targeting EGFR and FGFR1 into the adenoviral fiber knob domain and their evaluation as targeted cancer therapies. Hum Gene Ther. 2015;26(5):320–329.
  • Grandi P, Fernandez J, Szentirmai O, et al. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther. 2010;17(9):655–663.
  • Zeng Y, Pinard M, Jaime J, et al. A ligand-pseudoreceptor system based onde novo designed peptides for the generation of adenoviral vectors with altered tropism. J Gene Med. 2008;10(4):355–367.
  • Grünwald GK, Vetter A, Klutz K, et al. EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol Ther Nucleic Acids. 2013;2:e131.
  • Huhtala T, Kaikkonen MU, Lesch HP, et al. Biodistribution and antitumor effect of Cetuximab-targeted lentivirus. Nucl Med Biol. 2014;41(1):77–83.
  • Kaikkonen MU, Lesch HP, Pikkarainen J, et al. (Strept)avidin-displaying lentiviruses as versatile tools for targeting and dual imaging of gene delivery. Gene Ther. 2009;16(7):894–904.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.