259
Views
14
CrossRef citations to date
0
Altmetric
Review

A systems biology-led insight into the role of the proteome in neurodegenerative diseases

, &
Pages 845-855 | Received 23 May 2016, Accepted 28 Jul 2016, Published online: 22 Aug 2016

References

  • Abbott A. Dementia: a problem for our age. Nature. 2011;475:S2–S4. doi:10.1038/475S2a.
  • Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–1590. doi:10.1002/mds.25945.
  • Wood LB, Winslow AR, Strasser SD. Systems biology of neurodegenerative diseases. Integr Biol. 2015;7:758–775. doi:10.1039/c5ib00031a.
  • Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015;9:58. doi:10.3389/fncel.2015.00058.
  • Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115:1449–1457.
  • Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141–164.
  • Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: insights from gene–environment interactions in Huntington’s disease. Neurosci Biobehavioral Rev. 2015;52:178–192.
  • Noorbakhsh F, Overall CM, Power C. Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci. 2009;32:88–100. doi:10.1016/j.tins.2008.10.003.
  • Urbani A, Roncada P, Modesti A, et al. Inductive proteomics and large dataset collections. Mol Biosyst. 2015;11:1485–1486.doi:10.1039/c5mb90021b.
  • Russell B. The problems of philosophy. London: Williams and Norgate; 1912.
  • Schaffner KF. Reduction in biology and medicine. Philosophy of Medicine. 2011;16:137.
  • Medina MÁ. Systems biology for molecular life sciences and its impact in biomedicine. Cell Mol Life Sci. 2013;70:1035–1053. doi:10.1007/s00018-012-1109-z.
  • DeLong MR. The basal ganglia. Princ Neural Sci. 2011;4:853–867.
  • Noble D. The aims of systems biology: between molecules and organisms. Pharmacopsychiatry. 2011;44:S9–S14. doi:10.1055/s-0031-1271703.
  • Noble D. Claude bernard, the first systems biologist, and the future of physiology. Exp Physiol. 2008;93:16–26.
  • Bizzarri M, Palombo A, Cucina A. Theoretical aspects of systems biology. Prog Biophys Mol Biol. 2013;112:33–43. doi:10.1016/j.pbiomolbio.2013.03.019.
  • Smith LM, Kelleher NL. Consortium for top down proteomics. Proteoform: a single term describing protein complexity. Nat Methods. 2013;3:186–187. doi:10.1038/nmeth.2369.
  • Kohl P, Crampin EJ, Quinn TA, et al. Systems biology: an approach. Clin Pharmacol Ther. 2010;88:25–33. doi:10.1038/clpt.2010.92.
  • Geerts H, Dacks PA, Devanarayan V, et al. From big data to smart data in Alzheimer’s disease. The brain health modeling initiative to foster actionable knowledge. Alzheimers Dement. 2016;16:30246–30241. doi:10.1016/j.jalz.2016.04.008.
  • Henney A, Hunter P, McCulloch A, et al. Multi-bio and multi-scale systems biology. Prog Biophys Mol Biol. 2015;117:1–3. doi:10.1016/j.pbiomolbio.2015.03.001.
  • Longo G, Miquel PA, Sonnenschein C, et al. Is information a proper observable for biological organization? Prog Biophys Mol Biol. 2012;109:108–114. doi:10.1016/j.pbiomolbio.2012.06.004.
  • Xue C, Shtylla B, Brown A. A stochastic multiscale model that explains the segregation of axonal microtubules and neurofilaments in neurological diseases. PLoS Comput Biol. 2015;11:e1004406. doi:10.1371/journal.pcbi.1004406.
  • Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012;8:e1002375. doi:10.1371/journal.pcbi.1002375.
  • Vitek O. Getting started in computational mass spectrometry-based proteomics. PLoS Comput Biol. 2009;5:e1000366. doi:10.1371/journal.pcbi.1000366.
  • Noble WS, MacCoss MJ. Computational and statistical analysis of protein mass spectrometry data. PLoS Comput Biol. 2012;8:e1002296. doi:10.1371/journal.pcbi.1002296.
  • Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J Theor Biol. 2014;362:44–52. doi:10.1016/j.jtbi.2014.05.031.
  • Laukens K, Naulaerts S, Berghe WV. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics. 2015;15:981–996. doi:10.1002/pmic.201400296.
  • Ramanan VK, Shen L, Moore JH, et al. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet. 2012;28:323–332. doi:10.1016/j.tig.2012.03.004.
  • Goh WW, Lee YH, Chung M, et al. How advancement in biological network analysis methods empowers proteomics. Proteomics. 2012;12:550–563. doi:10.1002/pmic.201100321.
  • Croft D, Mundo AF, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2014;42:D472–D477. doi:10.1093/nar/gkt1102.
  • Du J, Yuan Z, Ma Z, et al. KEGG-PATH: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model. Mol Biosyst. 2014;10:2441–2447. doi:10.1039/c4mb00287c.
  • Nishimura D. Biotech software & internet report. 2004;3:117–120. doi:10.1089/152791601750294344.
  • Cerami EG, Gross BE, Demir E, et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39:D685–D690. doi:10.1093/nar/gkq1039.
  • Kutmon M, Riutta A, Nunes N, et al. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res. 2016;44:D488–D494. doi:10.1093/nar/gkv1024.
  • Krull M, Pistor S, Voss N, et al. TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res. 2006;34:D546–D551.
  • Ogishima S, Mizuno S, Kikuchi M, et al. AlzPathway, an updated map of curated signaling pathways: towards deciphering Alzheimer’s disease pathogenesis. Methods Mol Biol. 2016;1303:423–432. doi:10.1007/978-1-4939-2627-5_25.
  • Fujita KA, Ostaszewski M, Matsuoka Y, et al. Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol. 2014;49:88–102. doi:10.1007/s12035-013-8489-4.
  • Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res. 2015;43:D1049–D1056, doi:10.1093/nar/gku1179
  • Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–D478. doi:10.1093/nar/gku1204.
  • Orchard S, Ammari M, Aranda B, et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–D363. doi:10.1093/nar/gkt1115.
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–D815. doi:10.1093/nar/gks1094.
  • Orchard S, Kerrien S, Abbani S, et al. Protein interaction data curation: the international molecular exchange (IMEx) consortium. Nat Methods. 2012;9:345–350. doi:10.1038/nmeth.1931.
  • Matys V, Kel-Margoulis OV, Fricke E, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34:D108–D110.
  • Mitrea C, Taghavi Z, Bokanizad B, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013;4:278. doi:10.3389/fphys.2013.00278.
  • García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway analysis: state of the art. Front Physiol. 2015;6:383. doi:10.3389/fphys.2015.00383.
  • Jin L, Zuo XY, Su WY, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics. 2014;12:210–220. doi:10.1016/j.gpb.2014.10.002.
  • Lydersen S, Fagerland MW, Laake P. Recommended tests for association in 2 x 2 tables. Stat Med. 2009;28:1159–1175. doi:10.1002/sim.3531.
  • Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113.
  • Wang J, Duncan D, Shi Z, et al. WEB-based GEne SeT AnaLysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77–W83. doi:10.1093/nar/gkt439.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550.
  • Cha S, Imielinski MB, Rejtar T, et al. In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics. 2010;9:2529–2544. doi:10.1074/mcp.M110.000398.
  • Lavallée-Adam M, Rauniyar N, McClatchy DB, et al. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data. J Proteome Res. 2014;13:5496–5509. doi:10.1021/pr500473n.
  • Glaab E, Baudot A, Krasnogor N, et al. EnrichNet: network-based gene set enrichment analysis. Bioinformatics. 2012;28:i451–i457. doi:10.1093/bioinformatics/bts389.
  • Su G, Morris JH, Demchak B, et al. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47(8.13):1–24. doi:10.1002/0471250953.bi0813s47.
  • Antonov AV. BioProfiling.de: analytical web portal for high-throughput cell biology. Nucleic Acids Res. 2011;39:W323–W327. doi:10.1093/nar/gkr372.
  • Bastian M, Heymann S, Jacomy M. Gephi:an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media; 2009 May 17–20; San Jose (CA).
  • Hu Z, Chang YC, Wang Y, et al. VisANT 4.0: integrative network platform to connect genes, drugs, diseases and therapies. Nucleic Acids Res. 2013;41:W225–W231. doi:10.1093/nar/gkt401.
  • Mrvar A, Batagelj V. Analysis and visualization of large networks with program package Pajek. Complex Adaptive Systems Modeling. 2016;4:6. doi:10.1186/s40294-016-0017-8.
  • Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695(5):1–9.
  • R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna: R Core Team; 2016. Available from: http://www.R-project.org/
  • Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.
  • Tripathi S, Dehmer M, Emmert-Streib F. NetBioV: an R package for visualizing large network data in biology and medicine. Bioinformatics. 2014;30:2834–2836. doi:10.1093/bioinformatics/btu384.
  • Beisser D, Klau GW, Dandekar T, et al. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics. 2010;26:1129–1130. doi:10.1093/bioinformatics/btq089.
  • Shi Z, Wang J, Zhang B. NetGestalt: integrating multidimensional omics data over biological networks. Nat Methods. 2013;10:597–598. doi:10.1038/nmeth.2517.
  • Pal R, Alves G, Larsen JP, et al. New insight into neurodegeneration: the role of proteomics. Mol Neurobiol. 2014;49:1181–1199. doi:10.1007/s12035-013-8590-8.
  • Keeney JT, Swomley AM, Förster S, et al. Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl. 2013;7:109–122. doi:10.1002/prca.201200087.
  • Swomley AM, Förster S, Keeney JT, et al. Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta. 2014;1842:1248–1257. doi:10.1016/j.bbadis.2013.09.015.
  • Alberio T, Bucci EM, Natale M, et al. Parkinson’s disease plasma biomarkers: an automated literature analysis followed by experimental validation. J Proteomics. 2013;90:107–114. doi:10.1016/j.jprot.2013.01.025.
  • Garden GA, Campbell BM. Glial biomarkers in human central nervous system disease. Glia. 2016. doi:10.1002/glia.22998.
  • Ravid R, Fasano M. The importance of harmonizing and standardizing CNS biomarkers of neurodegeneration. Future Neurol. 2012;6:663–666. doi:10.2217/fnl.12.69.
  • Plum S, Steinbach S, Abel L, et al. Proteomics in neurodegenerative diseases: methods for obtaining a closer look at the neuronal proteome. Proteomics Clin Appl. 2015;9:848–871. doi:10.1002/prca.201400030.
  • Yang H, Wittnam JL, Zubarev RA, et al. Shotgun brain proteomics reveals early molecular signature in presymptomatic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2013;37:297–308. doi:10.3233/JAD-130476.
  • Nilsson P, Loganathan K, Sekiguchi M, et al. Loss of neprilysin alters protein expression in the brain of Alzheimer’s disease model mice. Proteomics. 2015;15:3349–3355. doi:10.1002/pmic.201400211.
  • Tao Y, Fang L, Yang Y, et al. Quantitative proteomic analysis reveals the neuroprotective effects of huperzine A for amyloid beta treated neuroblastoma N2a cells. Proteomics. 2013;13:1314–1324. doi:10.1002/pmic.201200437.
  • Ma Y, Bao J, Zhao X, et al. Activated cyclin-dependent kinase 5 promotes microglial phagocytosis of fibrillary β-amyloid by up-regulating lipoprotein lipase expression. Mol Cell Proteomics. 2013;12:2833–2844. doi:10.1074/mcp.M112.026864.
  • Chang RY, Etheridge N, Nouwens AS, et al. SWATH analysis of the synaptic proteome in Alzheimer’s disease. Neurochem Int. 2015;87:1–12. doi:10.1016/j.neuint.2015.04.004.
  • Zahid S, Oellerich M, Asif AR, et al. Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer’s disease patients. J Neurochem. 2012;121:954–963. doi:10.1111/j.1471-4159.2012.07737.x.
  • Zahid S, Khan R, Oellerich M, et al. Differential S-nitrosylation of proteins in Alzheimer’s disease. Neuroscience. 2014;256:126–136. doi:10.1016/j.neuroscience.2013.10.026.
  • Alberio T, Bossi AM, Milli A, et al. Proteomic analysis of dopamine and α-synuclein interplay in a cellular model of Parkinson’s disease pathogenesis. FEBS J. 2010;277:4909–4919. doi:10.1111/j.1742-4658.2010.07896.x.
  • Alberio T, Bondi H, Colombo F, et al. Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson’s disease pathogenesis. Mol Biosyst. 2014;10:1332–1344. doi:10.1039/c3mb70611g.
  • Ozgul S, Kasap M, Akpinar G, et al. Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson’s disease by using proteomic and molecular approaches. Neurochem Int. 2015;85-86:1–13. doi:10.1016/j.neuint.2015.03.007.
  • Licker V, Turck N, Kövari E, et al. Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson’s disease pathogenesis. Proteomics. 2014;14:784–794. doi:10.1002/pmic.201300342.
  • Riley BE, Gardai SJ, Emig-Agius D, et al. Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PLoS One. 2014;9:e102909. doi:10.1371/journal.pone.0102909.
  • Porras P, Duesbury M, Fabregat A, et al. A visual review of the interactome of LRRK2: using deep-curated molecular interaction data to represent biology. Proteomics. 2015;15:1390–1404. doi:10.1002/pmic.201400390.
  • Monti C, Bondi H, Urbani A, et al. Systems biology analysis of the proteomic alterations induced by MPP(+), a Parkinson’s disease-related mitochondrial toxin. Front Cell Neurosci. 2015;9:14. doi:10.3389/fncel.2015.00014.
  • Flynn JM, Czerwieniec GA, Choi SW, et al. Proteogenomics of synaptosomal mitochondrial oxidative stress. Free Radic Biol Med. 2012;53:1048–1060. doi:10.1016/j.freeradbiomed.2012.07.004.
  • Tang Z, Baykal AT, Gao H, et al. mTor is a signaling hub in cell survival: a mass-spectrometry-based proteomics investigation. J Proteome Res. 2014;13:2433–2444. doi:10.1021/pr500192g.
  • Choudhury KR, Das S, Bhattacharyya NP. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington’s disease and control; probable implications to the disease biology. J Proteomics. 2016;132:155–166. doi:10.1016/j.jprot.2015.11.007.
  • Hornburg D, Drepper C, Butter F, et al. Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics. Mol Cell Proteomics. 2014;13:3410–3420. doi:10.1074/mcp.M113.037291.
  • Collins MA, An J, Hood BL, et al. Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res. 2015;14:4486–4501. doi:10.1021/acs.jproteome.5b00804.
  • Puzzo D, Gulisano W, Palmeri A, et al. Rodent models for Alzheimer’s disease drug discovery. Expert Opin Drug Discov. 2015;10:703–711. doi:10.1517/17460441.2015.1041913.
  • Marras C. Subtypes of Parkinson’s disease: state of the field and future directions. Curr Opin Neurol. 2015;28:382–386. doi:10.1097/WCO.0000000000000219.
  • Alberio T, Lopiano L, Fasano M. Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J. 2012;279:1146–1155. doi:10.1111/j.1742-4658.2012.08516.x.
  • Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279:1156–1166. doi:10.1111/j.1742-4658.2012.08491.x.
  • Ravid R, Ferrer I. Brain banks as key part of biochemical and molecular studies on cerebral cortex involvement in Parkinson’s disease. FEBS J. 2012;279:1167–1176. doi:10.1111/j.1742-4658.2012.08518.x.
  • Falkenburger BH, Saridaki T, Dinter E, Cellular models for Parkinson’s disease. J Neurochem. 2016. Epub 2016 Apr 18. doi:10.1111/jnc.13618.
  • Gegg ME, Cooper JM, Chau KY, et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet. 2010;19:4861–4870. doi:10.1093/hmg/ddq419.
  • Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;119–131. doi:10.1038/ncb2012.
  • Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189:211–221. doi:10.1083/jcb.200910140.
  • Bondi H, Zilocchi M, Mare MG, et al. Dopamine induces mitochondrial depolarization without activating PINK1-mediated mitophagy. J Neurochem. 2016;136:1219–1231. doi:10.1111/jnc.13506.
  • Cookson MR. LRRK2 pathways leading to neurodegeneration. Curr Neurol Neurosci Rep. 2015;15:42. doi:10.1007/s11910-015-0564-y.
  • Gaudet P, Argoud-Puy G, Cusin I, et al. neXtProt: organizing protein knowledge in the context of human proteome projects. J Proteome Res. 2013;12:293–298. doi:10.1021/pr300830v.
  • Fasano M, Alberio T, Babu M, et al. Towards a functional definition of the mitochondrial human proteome. EuPA Open Proteomics. 2016;10:24–27.10.1016/j.euprot.2016.01.004.
  • Vizcaíno JA, Csordas A, del-Toro N, et al. update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–D456. 2016. doi:10.1093/nar/gkv1145.
  • Vizcaíno JA, Deutsch EW, Wang R, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32:223–226. doi:10.1038/nbt.2839.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.