296
Views
8
CrossRef citations to date
0
Altmetric
Review

Protein-based therapeutic for anemia caused by dyserythropoiesis

, , , , , , & show all
Pages 983-992 | Received 27 Apr 2016, Accepted 21 Sep 2016, Published online: 06 Oct 2016

References

  • Le Gros Clark WE. Origin of erythrocytes. Nature. 1947 Apr 26;159(4043):579.
  • Muta K, Krantz SB, Bondurant MC, et al. Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood. 1995 Jul 15;86(2):572–580.
  • Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016 Feb;172(4):512–523.
  • Ribeil J-A, Zermati Y, Vandekerckhove J, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007 Jan 4;445(7123):102–105.
  • Arlet J-B, Ribeil J-A, Guillem F, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014 Oct 9;514(7521):242–246.
  • Frisan E, Vandekerckhove J, de Thonel A, et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood. 2012 Feb 9;119(6):1532–1542.
  • Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 2004 Jul;18(7):1176–1199.
  • De Maria R, Zeuner A, Eramo A, et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999 Sep 30;401(6752):489–493.
  • De Maria R, Testa U, Luchetti L, et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood. 1999 Feb 1;93(3):796–803.
  • Zermati Y, Garrido C, Amsellem S, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001 Jan 15;193(2):247–254.
  • Sahara S, Aoto M, Eguchi Y, et al. Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature. 1999 Sep 9;401(6749):168–173.
  • Ferreira R, Ohneda K, Yamamoto M, et al. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005 Feb;25(4):1215–1227.
  • Trainor CD, Omichinski JG, Vandergon TL, et al. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol. 1996 May;16(5):2238–2247.
  • Bresnick EH, Martowicz ML, Pal S, et al. Developmental control via GATA factor interplay at chromatin domains. J Cell Physiol. 2005 Oct;205(1):1–9.
  • Gregory T, Yu C, Ma A, et al. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood. 1999 Jul 1;94(1):87–96.
  • Rylski M, Welch JJ, Chen Y-Y, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003 Jul;23(14):5031–5042.
  • Rodriguez P, Bonte E, Krijgsveld J, et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 2005 Jul 6;24(13):2354–2366.
  • Suzuki N, Suwabe N, Ohneda O, et al. Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood. 2003 Nov;102(10):3575–3583.
  • Whyatt D, Lindeboom F, Karis A, et al. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature. 2000 Aug;406(6795):519–524.
  • Hartl FU. Chaperone-assisted protein folding: the path to discovery from a personal perspective. Nat Med. 2011 Oct;17(10):1206–1210.
  • Mayer MP, Kityk R. Insights into the molecular mechanism of allostery in Hsp70s. Front Mol Biosci. 2015;2:58.
  • Lanneau D, Brunet M, Frisan E, et al. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med. 2008 Jun;12(3):743–761.
  • Stankiewicz AR, Lachapelle G, Foo CPZ, et al. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem. 2005 Nov 18;280(46):38729–38739.
  • Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol. 2001 Sep;3(9):839–843.
  • Lui JC-K, Kong S-K. Heat shock protein 70 inhibits the nuclear import of apoptosis-inducing factor to avoid DNA fragmentation in TF-1 cells during erythropoiesis. FEBS Lett. 2007 Jan 9;581(1):109–117.
  • Arlet J-B, Dussiot M, Moura IC, et al. Novel players in β-thalassemia dyserythropoiesis and new therapeutic strategies. Curr Opin Hematol. 2016 May;23(3):181–188.
  • Kihm AJ, Kong Y, Hong W, et al. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature. 2002 Jun 13;417(6890):758–763.
  • Yu X, Kong Y, Dore LC, et al. An erythroid chaperone that facilitates folding of alpha-globin subunits for hemoglobin synthesis. J Clin Invest. 2007 Jul;117(7):1856–1865.
  • Kong Y, Zhou S, Kihm AJ, et al. Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin Invest. 2004 Nov;114(10):1457–1466.
  • Suzuki M, Yamamoto M, Engel JD. Fetal globin gene repressors as drug targets for molecular therapies to treat the β-globinopathies. Mol Cell Biol. 2014 Oct 1;34(19):3560–3569.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008 Dec 19;322(5909):1839–1842.
  • Masuda T, Wang X, Maeda M, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science. 2016 Jan 15;351(6270):285–289.
  • Basak A, Sankaran VG. Regulation of the fetal hemoglobin silencing factor BCL11A. Ann N Y Acad Sci. 2016 Mar 9;1368:25–30.
  • Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 Jul 30;114(5):937–951.
  • Hopfer O, Nolte F, Mossner M, et al. Epigenetic dysregulation of GATA1 is involved in myelodysplastic syndromes dyserythropoiesis. Eur J Haematol. 2012 Feb;88(2):144–153.
  • Böhmer RM. IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells Dayt Ohio. 2004;22(2):216–224.
  • Krystal G, Lam V, Dragowska W, et al. Transforming growth factor beta 1 is an inducer of erythroid differentiation. J Exp Med. 1994 Sep 1;180(3):851–860.
  • Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000 Aug;28(8):885–894.
  • Zermati Y, Varet B, Hermine O. TGF-beta1 drives and accelerates erythroid differentiation in the epo-dependent UT-7 cell line even in the absence of erythropoietin. Exp Hematol. 2000 Mar;28(3):256–266.
  • Zhou L, McMahon C, Bhagat T, et al. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res. 2011 Feb 1;71(3):955–963.
  • Moshtaghi-Kashanian G-R, Gholamhoseinian A, Hoseinimoghadam A, et al. Splenectomy changes the pattern of cytokine production in beta-thalassemic patients. Cytokine. 2006 Sep;35(5–6):253–257.
  • Suragani RNVS, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014 Apr;20(4):408–414.
  • Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014 Apr;20(4):398–407.
  • Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013 May 9;153(4):828–839.
  • Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014 May 9;344(6184):649–652.
  • Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015 Jul 7;22(1):164–174.
  • Suragani RNVS, Cawley SM, Li R, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014 Jun 19;123(25):3864–3872.
  • Ribeil J-A, Arlet J-B, Dussiot M, et al. Ineffective erythropoiesis in β-thalassemia. Sci World J. 2013;2013:1–11.
  • Ruckle J, Jacobs M, Kramer W, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res. 2009 Apr;24(4):744–752.
  • Porter J, Origa R, Forni GL, et al. A phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (β)-thalassemia: interim results. Blood. 2013 Nov 15;122(21):3448–3448.
  • Piga A, Perrotta S, Gamberini MR, et al. Luspatercept (ACE-536) reduces disease burden, including anemia, iron overload, and leg ulcers, in adults with beta-thalassemia: results from a phase 2 study. Blood. 2015 Dec 3;126(23):752–752.
  • Komrokji R, Garcia-Manero G, Ades L, et al. A phase 2, dose-finding study of sotatercept (ace-011) in patients with lower-risk myelodysplastic syndromes (mds) or non-proliferative chronic myelomonocytic leukemia (cmml) and anemia requiring transfusion. Leuk Res. 2015 Apr;39(Supplement 1):S5–S6.
  • Platzbecker U, Germing U, Giagounidis A, et al. Luspatercept increases hemoglobin and reduces transfusion burden in patients with low or intermediate-1 risk myelodysplastic syndromes (mds): preliminary results from a phase 2 study. Leuk Res. 2015 Apr;39(Supplement 1):S25.
  • Ear J, Huang H, Wilson T, et al. RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1. Blood. 2015 Aug 13;126(7):880–890.
  • Harrison C, Kiladjian -J-J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):787–798.
  • Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012 Mar 1;366(9):799–807.
  • Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015 Jan 29;372(5):426–435.
  • Libani IV, Guy EC, Melchiori L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008 Aug 1;112(3):875–885.
  • Kautz L, Jung G, Valore EV, et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014 Jul;46(7):678–684.
  • Kautz L, Jung G, Du X, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood. 2015 Oct 22;126(17):2031–2037.
  • Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol. 2015 May;22(3):199–205.
  • Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010 Feb;16(2):177–182.
  • Finberg KE. Iron homeostasis: casting new roles. Blood. 2008 Sep 15;112(6):2181.
  • Guillem F, Lawson S, Kannengiesser C, et al. Two nonsense mutations in the TMPRSS6 gene in a patient with microcytic anemia and iron deficiency. Blood. 2008 Sep 1;112(5):2089–2091.
  • Guo S, Casu C, Gardenghi S, et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J Clin Invest. 2013 Apr 1;123(4):1531–1541.
  • Casu C, Aghajan M, Oikonomidou PR, et al. Combination of Tmprss6-ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia. Haematologica. 2016 Jan 1;101(1):e8–11.
  • Gardenghi S, Ramos P, Marongiu MF, et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. J Clin Invest. 2010 Dec;120(12):4466–4477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.