244
Views
5
CrossRef citations to date
0
Altmetric
Review

Platelet proteomics applied to the search for novel antiplatelet therapeutic targets

&
Pages 993-1006 | Received 13 Jun 2016, Accepted 05 Oct 2016, Published online: 20 Oct 2016

References

  • Patel SR, Hartwig JH, Italiano JE. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115:3348–3354.
  • Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol. 1987;92(1):181–187.
  • Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2(8567):1057–1058.
  • Marcus AJ, Broekman MJ, Drosopoulos JH, et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest. 1997;99(6):1351–1360.
  • Gregg D, Goldschmidt-Clermont PJ. Cardiology patient page. Platelets and cardiovascular disease. Circulation. 2003;108:e88–90.
  • Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011. Available from: http://www.who.int/nmh/publications/ncd_report2010/en/
  • Bizzozero J. Ueber einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Arch Pathol Anat Ph. 1882;90:261–332.
  • Lindemann S, Krämer B, Seizer P, et al. Platelets, inflammation and atherosclerosis. J Thromb Haemost. 2007;5(Suppl 1):203211.
  • Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123(18):2759–2767.
  • Tesfamariam B. Involvement of platelets in tumor cell metastasis. Pharmacol Ther. 2016;157:112–119.
  • Berthet J, Damien P, Hamzeh-Cognasse H, et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4signaling and differential cytokine secretion. Clin Immunol. 2012;145(3):189–200.
  • Yaguchi A, Lobo FL, Vincent JL, et al. Platelet function in sepsis. J Thromb Haemost. 2004;2(12):2096–2102.
  • Mavrommatis AC, Theodoridis T, Orfanidou A, et al. Coagulation system and platelets are fully activated in uncomplicated sepsis. Crit Care Med. 2000;28(2):451–457.
  • Steinhubl SR, Moliterno DJ. The role of the platelet in the pathogenesis of atherothrombosis. Am J Cardiovasc Drugs. 2005;5(6):399–408.
  • Coppinger JA, Cagney G, Toomey S, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103(6):2096–2104.
  • McNicol A, Israels SJ. Beyond hemostasis: the role of platelets in inflammation, malignancy and infection. Cardiovasc Hematol Disord Drug Targets. 2008;8(2):99–117.
  • Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–590.
  • Goubran HA, Stakiw J, Radosevic M, et al. Platelets effects on tumor growth. Semin Oncol. 2014;41(3):359–369.
  • Jurasz P, Alonso-Escolano D, Radomski MW. Platelet-cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol. 2004;143(7):819–826.
  • Burkhart JM, Vaudel M, Gambaryan S, et al. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood. 2012;120(15):e73–e82.
  • García A, Senis YA, editors. Platelet proteomics. Principles, analysis, and applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2011.
  • Ali-Khan N, Zuo X, Speicher DW. Overview of proteome analysis. Curr Protoc Protein Sci. 2003;Chapter 22:Unit 22.1.
  • Parguiña AF, Rosa I, García A. Proteomics applied to the study of platelet-related diseases: aiding the discovery of novel platelet biomarkers and drug targets. J Proteomics. 2012;76 Spec No.:275–286.
  • Coppinger JA, O’Connor R, Wynne K, et al. Moderation of the platelet releasate response by aspirin. Blood. 2007;109(11):4786–4792.
  • Della Corte A, Maugeri N, Pampuch A, et al. Application of 2-dimensional difference gel electrophoresis (2D-DIGE) to the study of thrombin-activated human platelet secretome. Platelets. 2008;19(1):43–50.
  • Piersma SR, Broxterman HJ, Kapci M, et al. Proteomics of the TRAP-induced platelet releasate. J Proteomics. 2009;72(1):91–109.
  • Vélez P, Izquierdo I, Rosa I, et al. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations. Sci Rep. 2015;5:8198.
  • Van Holten TC, Bleijerveld OB, Wijten P, et al. Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets. Cardiovasc Res. 2014;103(1):140–146.
  • Wijten P, Van Holten T, Woo LL, et al. High precision platelet releasate definition by quantitative reversed protein profiling–brief report. Arterioscler Thromb Vasc Biol. 2013;33(7):1635–1638.
  • Cini C, Yip C, Attard C, et al. Differences in the resting platelet proteome and platelet releasate between healthy children and adults. J Proteomics. 2015;123:78–88.
  • Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol. 1999;30(2):111–142.
  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–383.
  • Berckmans RJ, Nieuwland R, Böing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001;85:639–646.
  • Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97:425–434.
  • Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl. 1):S13–33.
  • Cloutier N, Tan S, Boudreau LH, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle associated immune complexes. EMBO Mol Med. 2013;5:235–49.
  • Lee YJ, Jy W, Horstman LL, et al. Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res. 1993;72(4):295–304.
  • Chirinos JA, Heresi GA, Velasquez H, et al. Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism. J Am Coll Cardiol. 2005;45(9):1467–1471.
  • Geiser T, Sturzenegger M, Genewein U, et al. Mechanisms of cerebrovascular events as assessed by procoagulant activity, cerebral microemboli, and platelet microparticles in patients with prosthetic heart valves. Stroke. 1998;29(9):1770–1777.
  • Singh N, Gemmell CH, Daly PA, et al. Elevated platelet-derived microparticle levels during unstable angina. Can J Cardiol. 1995;11(11):1015–1021.
  • Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation. 2000;101(8):841–843.
  • Biasucci LM, Porto I, Di Vito L, et al. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ J. 2012;76(9):2174–2182.
  • Diehl P, Aleker M, Helbing T, et al. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J Thromb Thrombolysis. 2011;31(2):173–179.
  • Wang ZT, Wang Z, Hu YW. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis. 2016;248:10–16.
  • Mezouar S, Mege D, Darbousset R, et al. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol. 2014;41(3):346–358.
  • Goubran H, Sabry W, Kotb R, et al. Platelet microparticles and cancer: an intimate cross-talk. Transfus Apher Sci. 2015;53(2):168–172.
  • Garcia BA, Smalley DM, Cho H, et al. The platelet microparticle proteome. J Proteome Res. 2005;4(5):1516–1521.
  • Capriotti AL, Caruso G, Cavaliere C, et al. Proteomic characterization of human platelet-derived microparticles. Anal Chim Acta. 2013;776:57–63.
  • Shai E, Rosa I, Parguiña AF, et al. Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteomics. 2012;76 Spec No.:287–296.
  • Aatonen MT, Ohman T, Nyman TA, et al. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles. 2014;3:24692.
  • Milioli M, Ibáñez-Vea M, Sidoli S, et al. Quantitative proteomics analysis of platelet-derived microparticles reveals distinct protein signatures when stimulated by different physiological agonists. J Proteomics. 2015;121:56–66.
  • Vélez P, Parguiña AF, Ocaranza-Sánchez R, et al. Identification of a circulating microvesicle protein network involved in ST-elevation myocardial infarction. Thromb Haemost. 2014;112(4):716–726.
  • Ramacciotti E, Hawley AE, Wrobleski SK, et al. Proteomics of microparticles after deep venous thrombosis. Thromb Res. 2010;125(6):e269–e274.
  • Xu MD, Wu XZ, Zhou Y, et al. Proteomic characteristics of circulating microparticles in patients with newly-diagnosed type 2 diabetes. Am J Transl Res. 2016;8(1):209–220.
  • Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–189.
  • Maynard DM, Heijnen HF, Gahl WA, et al. The α-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost. 2010;8(8):1786–1796.
  • Zufferey A, Schvartz D, Nolli S, et al. Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J Proteomics. 2014;101:130–140.
  • Hernandez-Ruiz L, Valverde F, Jimenez-Nuñez MD, et al. Organellar proteomics of human platelet dense granules reveals that 14-3-3zeta is a granule protein related to atherosclerosis. J Proteome Res. 2007;6(11):4449–4457.
  • Moebius J, Zahedi RP, Lewandrowski U, et al. The human platelet membrane proteome reveals several new potential membrane proteins. Mol Cell Proteomics. 2005;4(11):1754–1761.
  • Senis YA, Tomlinson MG, García A, et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol Cell Proteomics. 2007;6(3):548–564.
  • Lewandrowski U, Wortelkamp S, Lohrig K, et al. Platelet membrane proteomics: a novel repository for functional research. Blood. 2009;114(1):e10–e19.
  • Senis YA, Antrobus R, Severin S, et al. Proteomic analysis of integrin alphaIIbbeta3 outside-in signaling reveals Src-kinase-independent phosphorylation of Dok-1 and Dok-3 leading to SHIP-1 interactions. J Thromb Haemost. 2009;7(10):1718–1726.
  • Senis YA, Tomlinson MG, Ellison S, et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood. 2009;113(20):4942–4954.
  • Suzuki-Inoue K, Fuller GL, García A, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–549.
  • Parguiña AF, Alonso J, Rosa I, et al. A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood. 2012;120(26):e117–e126.
  • Lowe KL, Navarro-Nunez L, Watson SP, et al. and podoplanin in cancer metastasis. Thromb Res. 2012;129(Suppl 1):S30–S37.
  • Takagi S, Sato S, Oh-hara T, et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One. 2013;8(8):e73609.
  • Shrimpton CN, Borthakur G, Larrucea S, et al. Localization of the adhesion receptor glycoprotein Ib-IX-V complex to lipid rafts is required for platelet adhesion and activation. J Exp Med. 2002;196(8):1057–1066.
  • Locke D, Chen H, Liu Y, et al. Lipid rafts orchestrate signaling by the platelet receptor glycoprotein VI. J Biol Chem. 2002;277(21):18801–18809.
  • Pollitt AY, Grygielska B, Leblond B, et al. Phosphorylation of CLEC-2 is dependent on lipid rafts, actin polymerization, secondary mediators, and Rac. Blood. 2010;115(14):2938–2946.
  • Bodin S, Tronchère H, Payrastre B. Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim Biophys Acta. 2003;1610(2):247–257.
  • Quinton TM, Kim S, Jin J, et al. Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost. 2005;3(5):1036–1041.
  • Moscardó A, Vallés J, Latorre A, et al. The association of thromboxane A2 receptor with lipid rafts is a determinant for platelet functional responses. FEBS Lett. 2014;588(17):3154–3159.
  • Howes JM. Proteomic profiling of platelet signalling. Expert Rev Proteomics. 2013;10(4):355–364.
  • Karlaftis V, Perera S, Monagle P, et al. Importance of post-translational modifications on the function of key haemostatic proteins. Blood Coagul Fibrinolysis. 2016;27(1):1–4.
  • Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28(3):403–412.
  • Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost. 2016;14(5):918–930.
  • Hu J, Rho HS, Newman RH, et al. Global analysis of phosphorylation networks in humans. Biochim Biophys Acta. 2014;1844(1 Pt B):224–231.
  • García A. Two-dimensional gel electrophoresis: basic principles and application to platelet signaling studies. In: García A, Senis YA, editors. Platelet proteomics. Principles, analysis, and applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2011.
  • Marcus K, Moebius J, Meyer HE. Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem. 2003;376(7):973–993.
  • Maguire PB, Wynne KJ, Harney DF, et al. Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics. 2002;2(6):642–648.
  • García A, Prabhakar S, Hughan S, et al. Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood. 2004;103(6):2088–2095.
  • García A, Senis YA, Antrobus R, et al. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomics. 2006;6(19):5332–5343.
  • Wright B, Stanley RG, Kaiser WJ, et al. Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes. Proteomics. 2011;11(23):4588–4592.
  • Bleijerveld OB, Van Holten TC, Preisinger C, et al. Targeted phosphotyrosine profiling of glycoprotein VI signaling implicates oligophrenin-1 in platelet filopodia formation. Arterioscler Thromb Vasc Biol. 2013;33(7):1538–1543.
  • Schweigel H, Geiger J, Beck F, et al. Deciphering of ADP-induced, phosphotyrosine-dependent signaling networks in human platelets by Src-homology 2 region (SH2)-profiling. Proteomics. 2013;13(6):1016–1027.
  • Qureshi AH, Chaoji V, Maiguel D, et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One. 2009;4(10):e7627.
  • Van Den Bosch MT, Poole AW, Hers I. Cytohesin-2 phosphorylation by protein kinase C relieves the constitutive suppression of platelet dense granule secretion by ADP-ribosylation factor 6. J Thromb Haemost. 2014;12(5):726–735.
  • Zimman A, Titz B, Komisopoulou E, et al. Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One. 2014;9(1):e84488.
  • Parguiña AF, Grigorian-Shamajian L, Agra RM, et al. Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study. PLoS One. 2010;5(10):e13404.
  • Banfi C, Brioschi M, Marenzi G, et al. Proteome of platelets in patients with coronary artery disease. Exp Hematol. 2010;38(5):341–350.
  • Parguiña AF, Grigorian-Shamagian L, Agra RM, et al. Variations in platelet proteins associated with ST-elevation myocardial infarction: novel clues on pathways underlying platelet activation in acute coronary syndromes. Arterioscler Thromb Vasc Biol. 2011;31(12):2957–2964.
  • Vélez P, Ocaranza-Sánchez R, López-Otero D, et al. 2D-DIGE-based proteomic analysis of intracoronary versus peripheral arterial blood platelets from acute myocardial infarction patients: upregulation of platelet activation biomarkers at the culprit site. Proteomics Clin Appl. 2016;10(8):851–858.
  • Arias-Salgado EG, Larrucea S, Butta N, et al. Variations in platelet protein associated with arterial thrombosis. Thromb Res. 2008;122(5):640–647.
  • Avila C, Huang RJ, Stevens MV, et al. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Exp Clin Endocrinol Diabetes. 2012;120(4):248–251.
  • Pieroni L, Finamore F, Ronci M, et al. Proteomics investigation of human platelets in healthy donors and cystic fibrosis patients by shotgun nUPLC-MSE and 2DE: a comparative study. Mol Biosyst. 2011;7(3):630–639.
  • Zellner M, Baureder M, Rappold E, et al. Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson’s disease patients. J Proteomics. 2012;75(7):2080–2092.
  • Liu J, Li J, Deng X. Proteomic analysis of differential protein expression in platelets of septic patients. Mol Biol Rep. 2014;41(5):3179–3185.
  • Fröbel J, Cadeddu RP, Hartwig S, et al. Platelet proteome analysis reveals integrin-dependent aggregation defects in patients with myelodysplastic syndromes. Mol Cell Proteomics. 2013;12(5):1272–1280.
  • Volpi E, Giusti L, Ciregia F, et al. Platelet proteome and clopidogrel response in patients with stable angina undergoing percutaneous coronary intervention. Clin Biochem. 2012;45(10–11):758–765.
  • Mateos-Cáceres PJ, Macaya C, Azcona L, et al. Different expression of proteins in platelets from aspirin-resistant and aspirin-sensitive patients. Thromb Haemost. 2010;103(1):160–170.
  • Marcone S, Dervin F, Fitzgerald DJ. Proteomic signatures of antiplatelet drugs: new approaches to exploring drug effects. J Thromb Haemost. 2015;13(Suppl 1):S323–S331.
  • Azcona L, López Farré AJ, Jiménez Mateos-Cáceres P, et al. Impact of clopidogrel and aspirin treatment on the expression of proteins in platelets from type-2 diabetic patients with stable coronary ischemia. J Pharm Sci. 2012;101(8):2821–2832.
  • Floyd CN, Goodman T, Becker S, et al. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects. Br J Clin Pharmacol. 2014;78(2):320–328.
  • Overbaugh KJ. Acute coronary syndrome. Am J Nurs. 2009;109(5):42–52; quiz 53.
  • López-Farré AJ, Zamorano-Leon JJ, Azcona L, et al. Proteomic changes related to “bewildered” circulating platelets in the acute coronary syndrome. Proteomics. 2011;11(16):3335–3348.
  • Healy AM, Pickard MD, Pradhan AD, et al. Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation. 2006;113(19):2278–2284.
  • Raphael R, Purushotham D, Gastonguay C, et al. Combining patient proteomics and in vitro cardiomyocyte phenotype testing to identify potential mediators of heart failure with preserved ejection fraction. J Transl Med. 2016;14:18.
  • El Haouari M, Rosado JA. Platelet function in hypertension. Blood Cells Mol Dis. 2009;42(1):38–43.
  • Montón M, Jiménez A, Núñez A, et al. Comparative effects of angiotensin II AT-1 type receptor antagonists in vitro on human platelet activation. J Cardiovasc Pharmacol. 2000;35(6):906–913.
  • Sacristán D, Marques M, Zamorano-León JJ, et al. Modifications by Olmesartan medoxomil treatment of the platelet protein profile of moderate hypertensive patients. Proteomics Clin Appl. 2008;2(9):1300–1312.
  • Randriamboavonjy V, Isaak J, Elgheznawy A, et al. Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. Blood. 2012;120(2):415–423.
  • Escolar G, Díaz-Ricart M, Cases A, et al. Abnormal cytoskeletal assembly in platelets from uremic patients. Am J Pathol. 1993;143(3):823–831.
  • Walkowiak B, Kaminska M, Okrój W, et al. The blood platelet proteome is changed in UREMIC patients. Platelets. 2007;18(5):386–388.
  • Marques M, Sacristán D, Mateos-Cáceres PJ, et al. Different protein expression in normal and dysfunctional platelets from uremic patients. J Nephrol. 2010;23(1):90–101.
  • Himmelfarb J, Hakim RM. Oxidative stress in uremia. Curr Opin Nephrol Hypertens. 2003;12(6):593–598.
  • O’Sullivan BP, Linden MD, Frelinger AL III, et al. Platelet activation in cystic fibrosis. Blood. 2005;105(12):4635–4641.
  • Mattoscio D, Evangelista V, De Cristofaro R, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) expression in human platelets: impact on mediators and mechanisms of the inflammatory response. Faseb J. 2010;24(10):3970–3980.
  • Gowert NS, Donner L, Chatterjee M, et al. Blood platelets in the progression of Alzheimer’s disease. PLoS One. 2014;9(2):e90523.
  • Machado FR, Silva E. Coagulation and sepsis. Endocr Metab Immune Disord Drug Targets. 2006;6(2):175–182.
  • Sharron M, Hoptay CE, Wiles AA, et al. Platelets induce apoptosis during sepsis in a contact-dependent manner that isinhibited by GPIIb/IIIa blockade. PLoS One. 2012;7(7):e41549.
  • Neukirchen J, Blum S, Kuendgen A, et al. Platelet counts and haemorrhagic diathesis in patients with myelodysplastic syndromes. Eur J Haematol. 2009;83:477–482.
  • Girtovitis FI, Ntaios G, Papadopoulos A, et al. Defective platelet aggregation in myelodysplastic syndromes. Acta Haematol. 2007;118(2):117–122.
  • Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood. 2002;99(1):36–43.
  • Karmakar S, Banerjee D, Chakrabarti A. Platelet proteomics in thalassemia: factors responsible for hypercoagulation. Proteomics Clin Appl. 2016;10(3):239–247.
  • Zhang HW, Zhou P, Wang KZ, et al. Platelet proteomics in diagnostic differentiation of primary immune thrombocytopenia using SELDI-TOF-MS. Clin Chim Acta. 2016;455:75–79.
  • Weiss HJ, Witte LD, Kaplan KL, et al. Heterogeneity in storage pool deficiency: studies on granule-bound substances in 18 patients including variants deficient in alpha-granules, platelet factor 4, beta-thromboglobulin, and platelet-derived growth factor. Blood. 1979;54(6):1296–1319.
  • Gunay-Aygun M, Falik-Zaccai TC, Vilboux T, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet. 2011;43(8):732–734.
  • Maurer-Spurej E, Kahr WH, Carter CJ, et al. The value of proteomics for the diagnosis of a platelet-related bleeding disorder. Platelets. 2008;19(5):342–351.
  • Di Michele M, Thys C, Waelkens E, et al. An integrated proteomics and genomics analysis to unravel a heterogeneous platelet secretion defect. J Proteomics. 2011;74(6):902–913.
  • Karmakar S, Saha S, Banerjee D, et al. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins. Eur J Haematol. 2015;94(1):43–50.
  • Gachet C. Antiplatelet drugs: which targets for which treatments? J Thromb Haemost. 2015;13(Suppl 1):S313–S322.
  • Floyd CN, Ferro A. Antiplatelet drug resistance: molecular insights and clinical implications. Prostaglandins Other Lipid Mediat. 2015;120:21–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.