419
Views
11
CrossRef citations to date
0
Altmetric
Review

Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization

Pages 97-107 | Received 25 Aug 2016, Accepted 10 Nov 2016, Published online: 24 Nov 2016

References

  • Karas M, Bachmann D, Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem. 1985;57:2935–2939.
  • Karas M, Bachmann D, Bahr U, et al. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc. 1987;78:53–68.
  • Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of flight mass spectrometry. Rapid Comm Mass Spectrom. 1988;2:151–153.
  • Vestal ML, Juhasz P. U.S. Patent 5, 625, 184. 1997 Apr 29.
  • Cain TC, Lubman DM, Weber WJ, et al. Differentiation of bacteria using protein profiles from matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Rapid Comm Mass Spectrom. 1994;8:1026–1030.
  • Claydon MA, Davey SN, Edwards-Jones V, et al. The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol. 1996;14:1584–1586.
  • Holland RD, Wilkes JG, Rafii F, et al. Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of- flight mass spectrometry. Rapid Comm Mass Spectrom. 1996;10:1227–1232.
  • Krishnamurthy T, Ross PL. Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun Mass Spectrom. 1996;10:1992–1996.
  • Krishnamurthy T, Ross PL, Rajamani U. Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1996;10:883–888.
  • Liang X, Zheng K, Qian MG, et al. Determination of bacterial protein profiles by matrix-assisted laser desorption/ionization mass spectrometry with high-performance liquid chromatography. Rapid Commun Mass Spectrom. 1996;10:1219–1226.
  • Kallow W, Dieckmann R, Kleinkauf N, et al. European Patent EP1253622B1. 2007 Dec 12.
  • Kallow W, Dieckmann R, Erhard M, et al. European Patent EP1437673B1. 2009 Jul 29.
  • Medzihradszky KF, Campbell JM, Baldwin MA, et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem. 2000;72(3):552–558.
  • Suckau D, Resemann A, Schuerenberg M, et al. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal Bioanal Chem. 2003;376(7):952–965.
  • Lin M, Campbell JM, Mueller DR, et al. Intact protein analysis by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:1809–1814.
  • Demirev PA, Feldman AB, Kowalski P, et al. Top-down proteomics for rapid identification of intact microorganisms. Anal Chem. 2005;77:7455–7461.
  • Maier T, Klepel S, Renner U, et al. Fast and reliable MALDI-TOF MS-based microorganism identification. Nat Methods. 2006;3:i–ii.
  • Fagerquist CK, Sultan O. Top-down proteomic identification of furin-cleaved α-subunit of Shiga toxin 2 from Escherichia coli O157: H7using MALDI-TOF-TOF-MS/MS. J Biomed Biotechnol. 2010;2010:123460.
  • Fagerquist CK, Sultan O. Induction and identification of disulfide-intact and disulfide-reduced β-subunit of Shiga toxin 2 from Escherichia coli O157: h7using MALDI-TOF-TOF-MS/MS and top-down proteomics. Analyst. 2011;136(8):1739–1746.
  • New test system identifies 193 different yeasts and bacteria known to cause illness. [cited 2013 Aug 21] Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm365907.htm
  • 510(k) SUMMARY. [cited 2013 Oct 28] Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf13/k130831.pdf
  • Fagerquist CK, Zaragoza WJ, Sultan O, et al. Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Appl Environ Microbiol. 2014;80(9):2928–2940.
  • Applications of Mass Spectrometry in Microbiology. From Strain Characterization to Rapid Screening for Antibiotic Resistance. In: Demirev P, Sandrin TR, editors. Applications of Mass Spectrometry in Microbiology: From Strain Characterization to Rapid Screening for Antibiotic Resistance. Switzerland: Springer International Publishing; 2016.
  • Basile F, Mignon RK. Methods and instrumentation in mass spectrometry for the differentiation of closely related microorganisms. In: Demirev, Plamen, Sandrin, et al., editors. Applications of mass spectrometry in microbiology: from strain characterization to rapid screening for antibiotic resistance. Switzerland: Springer International Publishing; 2016. p. 13–50.
  • Santos IC, Hildenbrand ZL, Schug KA. Applications of MALDI-TOF MS in environmental microbiology. Analyst. 2016;141(10):2827–2837.
  • Lau SK, Lam CS, Ngan AH, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei. BMC Microbiol. 2016;16:36.
  • Nowakiewicz A, Ziółkowska G, Zięba P, et al. Coagulase-positive Staphylococcus isolated from wildlife: identification, molecular characterization and evaluation of resistance profiles with focus on a methicillin-resistant strain. Comp Immunol Microbiol Infect Dis. 2016;44:21–28.
  • Gomila M, Prince-Manzano C, Svensson-Stadler L, et al. Genotypic and phenotypic applications for the differentiation and species-level identification of achromobacter for clinical diagnoses. PLoS One. 2014;9(12):e114356.
  • Balážová T, Šedo O, Štefanić P, et al. Improvement in Staphylococcus and Bacillus strain differentiation by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling by using microwave-assisted enzymatic digestion. Rapid Commun Mass Spectrom. 2014;28(17):1855–1861.
  • Bozçal E, Yiğittürk G, Uzel A, et al. Investigation of enteropathogenic Escherichia coli and Shiga toxin-producing Escherichia coli associated with hemolytic uremic syndrome in İzmir Province, Turkey. Turk J Med Sci. 2016;46(3):733–741.
  • Ojima-Kato T, Yamamoto N, Takahashi H, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) can precisely discriminate the lineages of Listeria monocytogenes and species of Listeria. PLoS One. 2016;11(7):e0159730.
  • Veloo AC, de Vries ED, Jean-Pierre H, et al. The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of Gram-positive anaerobic cocci. Clin Microbiol Infect. 2016;22:793–798. pii: S1198-743X(16)30216-6.
  • Fagerquist CK, Bates AH, Heath S, et al. Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. J Proteome Res. 2006;5(10):2527–2538.
  • Christner M, Trusch M, Rohde H, et al. Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-Toxigenic Escherichia coli. PLoS One. 2014;9(7):e101924.
  • Williams TL, Andrzejewski D, Lay JO, et al. Experimental factors affecting the quality and reproducibility of MALDI TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom. 2003;14(4):342–351.
  • Fagerquist CK, Miller WG, Harden LA, et al. Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of Campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis. Anal Chem. 2005;77(15):4897–4907.
  • Fagerquist CK, Yee E, Miller WG. Composite sequence proteomic analysis of protein biomarkers of Campylobacter coli, C. lari and C. concisus for bacterial identification. Analyst. 2007;132(10):1010–1023.
  • Fagerquist CK. Amino acid sequence determination of protein biomarkers of Campylobacter upsaliensis and C. helveticus by “composite” sequence proteomic analysis. J Proteome Res. 2007;6(7):2539–2549.
  • Penny C, Grothendick B, Zhang L, et al. A designed experiments approach to optimizing MALDI-TOF MS spectrum processing parameters enhances detection of antibiotic resistance in campylobacter jejuni. Front Microbiol. 2016;7:818.
  • Rhoads DD, Wang H, Karichu J, et al. The presence of a single MALDI-TOF mass spectral peak predicts methicillin resistance in staphylococci. Diagn Microbiol Infect Dis. 2016;86(3):257–261.
  • Pardo CA, Tan RN, Hennequin C, et al. Rapid detection of AAC(6ʹ)-Ib-cr production using a MALDI-TOF MS strategy. Eur J Clin Microbiol Infect Dis. 2016. DOI:10.1007/s10096-016-2762-1.
  • Schauss T, Wings TK, Brunner JS, et al. Bacterial diversity and antibiotic resistances of abundant aerobic culturable bacteria in input and output samples of fifteen German biogas plants. J Appl Microbiol. 2016. DOI:10.1111/jam.13277.
  • Ramoul A, Loucif L, Bakour S, et al. Co-occurrence of blaNDM-1 with blaOXA-23 or blaOXA-58 in clinical multidrug-resistant Acinetobacter baumannii isolates in Algeria. J Glob Antimicrob Resist. 2016;6:136–141.
  • Ouedraogo AS, Sanou M, Kissou A, et al. High prevalence of extended-spectrum ß-lactamase producing enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect Dis. 2016;16:326.
  • Lima TB, Silva ON, de Almeida KC, et al. Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae. J Antibiot (Tokyo). 2016. DOI:10.1038/ja.2016.77.
  • Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl. 2016;10(9–10):964–981.
  • Gomba A, Chidamba L, Korsten L. Antimicrobial resistance profiles of salmonella spp. from agricultural environments in fruit production systems. Foodborne Pathog Dis. 2016;13(9):495–501.
  • Camara JE, Hays FA. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem. 2007;389(5):1633–1638.
  • Fagerquist CK, Zaragoza WJ. Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identification of Shiga toxins 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(6):671–680.
  • Pineda FJ, Lin JS, Fenselau C, et al. Testing the significance of microorganism identification by mass spectrometry and proteome database search. Anal Chem. 2000;72(16):3739–3744.
  • Hirel PH, Schmitter JM, Dessen P, et al. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci USA. 1989;86:8247–8251.
  • Gonzales T, Robert-Baudouy J. Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev. 1996;18:319–334.
  • Solbiati J, Chapman-Smith A, Miller J, et al. Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol. 1999;290:607–614.
  • Demirev PA, Lin JS, Pineda FJ, et al. Bioinformatics and mass spectrometry for microorganism identification: proteome-wide post-translational modifications and database search algorithms for characterization of intact H. Pylori. Anal Chem. 2001;73(19):4566–4573.
  • Zhen Y, Xu N, Richardson B, et al. Development of an LC-MALDI method for the analysis of protein complexes. J Am Soc Mass Spectrom. 2004;15(6):803–822.
  • Liu Z, Schey KL. Optimization of a MALDI TOF-TOF mass spectrometer for intact protein analysis. J Am Soc Mass Spectrom. 2005;16(4):482–490.
  • Liu Z, Schey KL. Fragmentation of multiply-charged intact protein ions using MALDI TOF-TOF mass spectrometry. J Am Soc Mass Spectrom. 2008;19:231–238.
  • Schnaible V, Wefing S, Resemann A, et al. Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS. Anal Chem. 2002;74(19):4980–4988.
  • Spengler B. Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom. 1997;32:1019–1036.
  • Suckau D, Resemann A. T3-sequencing: targeted characterization of the N- and C-termini of undigested proteins by mass spectrometry. Anal Chem. 2003;75:5817–5824.
  • Fagerquist CK, Garbus BR, Williams KE, et al. Web-based software for rapid top-down proteomic identification of protein biomarkers, with implications for bacterial identification. Appl Environ Microbiol. 2009;75:4341–4353.
  • Fagerquist CK, Harden LA, Garbus BR. United States Patent 8, 160, 819 B2. 2012 Apr 17. United States.
  • Bush MF, Hall Z, Giles K, et al. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem. 2010;82(22):9557–9565.
  • Yu W, Vath JE, Huberty MC, et al. Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry. Anal Chem. 1993;65(21):3015–3023.
  • Paizs B, Suhai S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–548.
  • Price WD, Schnier PD, Jockush RA, et al. Unimolecular reaction kinetics in the high-pressure limit without collisions. J Am Chem Soc. 1996;118:10640–10644.
  • Horn DM, Breuker K, Frank AJ, et al. Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J Am Chem Soc. 2001;123(40):9792–9799.
  • Lin C, Cournoyer JJ, O’Connor PB. Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. J Am Soc Mass Spectrom. 2008;19(6):780–789.
  • Halim MA, Girod M, MacAleese L, et al. Combined infrared multiphoton dissociation with ultraviolet photodissociation for ubiquitin characterization. J Am Soc Mass Spectrom. 2016;27(9):1435–2442.
  • Benesch JL, Ruotolo BT, Simmons DA, et al. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev. 2007;107:3544–3567.
  • Heck AJ. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods. 2008;5(11):927–933.
  • Chait BT, Cadene M, Olinares PD, et al. Revealing higher order protein structure using mass spectrometry. J Am Soc Mass Spectrom. 2016;27(6):952–965.
  • Qin M, Wang W, Thirumalai D. Protein folding guides disulfide bond formation. Proc Natl Acad Sci USA. 2015;112(36):11241–11246.
  • Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem. 2015;87(1):670–676.
  • Chen Z, Li Y, Lin S, et al. Development of continuous microwave-assisted protein digestion with immobilized enzyme. Biochem Biophys Res Commun. 2014;445(2):491–496.
  • Bohr H, Bohr J. Microwave-enhanced folding and denaturation of globular proteins. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61(4 Pt B):4310–4314.
  • Solomentsev GY, English NJ, Mooney DA. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: a nonequilibrium molecular dynamics study. J Chem Phys. 2010;133(23):235102.
  • English NJ, Mooney DA. Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study. J Chem Phys. 2007;126(9):091105.
  • Edwards WF, Young DD, Deiters A. The effect of microwave irradiation on DNA hybridization. Org Biomol Chem. 2009;7(12):2506–2508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.