231
Views
2
CrossRef citations to date
0
Altmetric
Review

Methodological approaches and insights on protein aggregation in biological systems

, , , , &
Pages 55-68 | Received 25 May 2016, Accepted 22 Nov 2016, Published online: 05 Dec 2016

References

  • Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol. 2010;11(11):777–788.
  • King J, Haase-Pettingell C, Gossard D. Protein folding and misfolding. Am Sci. 2002;90(5):445–453.
  • Gebbink MFBG, Bouma B, Maas C, et al. Physiological responses to protein aggregates: fibrinolysis, coagulation and inflammation (new roles for old factors). FEBS Lett. 2009;583(16):2691–2699.
  • Jahn TR, Radford SE. The Yin and Yang of protein folding. Febs J. 2005;272(23):5962–5970.
  • Ausar S. Forced degradation studies: an essential tool for the formulation development of vaccines. Vaccine Dev Ther. 2013;3:11–33.
  • Reis-Rodrigues P, Czerwieniec G, Peters TW, et al. Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan. Aging Cell. 2012;11(1):120–127.
  • Mirzaei H, Protein: RF. protein aggregation induced by protein oxidation. J Chromatogr B Anal Technol Biomed Life Sci. 2008;873(1):8–14.
  • Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32(3–4):307–326.
  • Ey C, Weickmann J, Jf C, et al. Heterogeneous nucleation-controlled particulate formation of recombinant human platelet-activating factor acetylhydrolase in pharmaceutical formulation. J Pharm Sci. 2005;94(2):256–274.
  • Jones LS, Kaufmann A, Middaugh CR. Silicone oil induced aggregation of proteins. J Pharm Sci. 2005;94(4):918–927.
  • Woods AS, Ferre S. Amazing stability of the arginine-phosphate electrostatic interaction. J Proteome Res. 2005;4(4):1397–1402.
  • Kitchen J, Saunders RE, Warwicker J. Charge environments around phosphorylation sites in proteins. BMC Struct Biol. 2008;8:19.
  • Ben-Nissan G, Sharon M. Regulating the 20S Proteasome Ubiquitin-Independent Degradation Pathway. Biomolecules. 2014;4(3):862–884.
  • Arrasate M, Finkbeiner S. Protein aggregates in Huntington’s disease. Exp Neurol. 2012;238(1):1–11.
  • Weiss MA. Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett. 2013;587(13):1942–1950.
  • Jensen TJ, Loo MA, Pind S, et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995;83(1):129–135.
  • Munishkina LA, Cooper EM, Uversky VN, et al. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit. 2004;17:456–464.
  • Beyer K, Ariza A. Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol. 2007;66(11):965–974.
  • Bartolini M, Bertucci C, Bolognesi ML, et al. Insight into the kinetic of amyloid beta (1-42) peptide self-aggregation: Elucidation of inhibitors’ mechanism of action. ChemBioChem. 2007;8(17):2152–2161.
  • Fezoui Y, Teplow DB. Kinetic studies of amyloid beta-protein fibril assembly. Differential effects of alpha-helix stabilization. J Biol Chem. 2002;277(40):36948–36954.
  • Necula M, Kayed R, Milton S, et al. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem. 2007;282(14):10311–10324.
  • Huang THJ, Yang DS, Fraser PE, et al. Alternate aggregation pathways of the Alzheimer beta-amyloid peptide: an in vitro model of preamyloid. J Biol Chem. 2000;275(46):36436–36440.
  • Weber B, Schaper C, J S, et al. Interaction of the amyloid precursor like protein 1 with the alpha2A-adrenergic receptor increases agonist-mediated inhibition of adenylate cyclase. Cell Signal. 2006;18(10):1748–1757.
  • Scruggs SB, Zong NC, Wang D, et al. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics. AJP Hear Circ Physiol. 2012;303(1):H9–H18.
  • Wang X, Pattison JS, Su H. Posttranslational modification and quality control. Circ Res. 2013;112(2):367–381.
  • Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899(1):191–208.
  • Friguet B, Szweda LI, Stadtman ER. Susceptibility of glucose-6-phosphate dehydrogenase modified by 4-hydroxy-2-nonenal and metal-catalyzed oxidation to proteolysis by the multicatalytic protease. Arch Biochem Biophys. 1994;311(1):168–173.
  • Bulteau AL, Lundberg KC, Humphries KM, et al. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem. 2001;276(32):30057–30063.
  • Predmore JM, Wang P, Davis F, et al. Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation. 2010;121(8):997–1004.
  • Papa L, Gomes E, Rockwell P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis. 2007;12(8):1389–1405.
  • Fiori J, Naldi M, Bartolini M, et al. Disclosure of a fundamental clue for the elucidation of the myricetin mechanism of action as amyloid aggregation inhibitor by mass spectrometry. Electrophoresis. 2012;33(22):3380–3386.
  • Zhang YW, Otterness DM, Chiang GG, et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol Cell. 2005;19(5):607–618.
  • Drews O, Tsukamoto O, Liem D, et al. Differential regulation of proteasome function in isoproterenol-induced cardiac hypertrophy. Circ Res. 2010;107(9):1094–1101.
  • Bingol B, Wang CF, Arnott D, et al. Autophosphorylated CaMKII alpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell. 2010;140(4):567–578.
  • Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell. 2007;25(1):151–159.
  • Kovacs JJ, Murphy PJM, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18(5):601–607.
  • Ogiso H, Kagi N, Matsumoto E, et al. Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex. Biochemistry. 2004;43(49):15510–15519.
  • Yang W-L, Wang J, Chan C-H, et al. The E3 Ligase TRAF6 Regulates Akt Ubiquitination and Activation. Sci. 2009;325(5944):1134–1138.
  • Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol. 2008;9(9):679–690.
  • Sarikas A, Hartmann T, Pan Z-Q. The cullin protein family. Genome Biol. 2011;12(4):220.
  • Chen Z, Sui J, Zhang F, et al. Cullin family proteins and tumorigenesis: Genetic association and molecular mechanisms. J Cancer. 2015;6(3):233–242.
  • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780–786.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.
  • Halperin L, Jung J, Michalak M. The many functions of the endoplasmic reticulum chaperones and folding enzymes. IUBMB Life. 2014;66(5):318–326.
  • Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84(1):435–464.
  • Chen B, Piel WH, Gui L, et al. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics. 2005;86(6):627–637.
  • Schild H, Rammensee HG. gp96–the immune system’s Swiss army knife. Nat Immunol. 2000;1(2):100–101.
  • Meusser B, Hirsch C, Jarosch E, et al. ERAD: the long road to destruction. Nat Cell Biol. 2005;7(8):766–772.
  • Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy. 2008;4(2):237–239.
  • Gamerdinger M, Kaya AM, Wolfrum U, et al. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep [Internet]. 2011;12(2):149 LP–156. Available from http://embor.embopress.org/content/12/2/149.abstract
  • Behl C. BAG3 and friends: Co-chaperones in selective autophagy during aging and disease. Autophagy[Internet]. 2011;7(7):795–798. Available from http://dx.doi.org/10.4161/auto.7.7.15844
  • Ngo JK, Davies KJA. Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med. 2009;46(8):1042–1048.
  • Horwich AL. Fenton W A, Chapman E, Farr GW. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol. 2007;23:115–145.
  • Bukau B, Weissman J, Horwich A. Molecular Chaperones and Protein Quality Control. Cell. 2006;125(3):443–451.
  • Nishida K, Otsu K. Autophagy during cardiac remodeling. J Mol Cell Cardiol. 2016;95:11-18.
  • Batulan Z, Pulakazhi Venu VK, Li Y, et al. Extracellular release and signaling by heat shock protein 27: Role in modifying vascular inflammation. Front Immunol. 2016;7:285.
  • Sultan A, Raman B, Rao CM, et al. The extracellular chaperone haptoglobin prevents serum fatty acid-promoted amyloid fibril formation of β2-microglobulin, resistance to lysosomal degradation, and cytotoxicity. J Biol Chem. 2013;288(45):32326–32342.
  • Kranenburg O, Bouma B, Kroon-Batenburg LMJ, et al. Tissue-type plasminogen activator is a multiligand cross-beta structure receptor. Curr Biol. 2002;12(2):1833–1839.
  • Maas C, Govers-Riemslag JWP, Bouma B, et al. Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest. 2008;118(9):3208–3218.
  • Maas C, Schiks B, Strangi RD, et al. Identification of fibronectin type I domains as amyloid-binding modules on tissue-type plasminogen activator and three homologs. Amyloid. 2008;15(3):166–180.
  • Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging. 2000;12(1):2–19.
  • Chao J, Bledsoe G, Yin H, et al. The tissue kallikrein-kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem. 2006;387(6):665-675.
  • Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143(5):813–825.
  • Askanas V, Engel WK, Nogalska A. Inclusion body myositis: A degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation: mini-symposium: protein aggregate myopathies. Brain Pathology. 2009;19:493–506.
  • Beyreuther K, Bush AI, Dyrks T, et al. Mechanisms of amyloid deposition in Alzheimer’s disease. Ann N Y Acad Sci. 1991;640:129–139.
  • Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci. 2013;33(49):19086–19098.
  • Kummer MP, Heneka MT. Truncated and modified amyloid-beta species. Alzheimers Res Ther. 2014;6(3):28.
  • Geschwind DH. Tau phosphorylation, tangles, and neurodegeneration: The chicken or the egg? Neuron. 2003;40(3):457–460.
  • Cohen TJ, Friedmann D, Hwang AW, et al. The microtubule-associated tau protein has intrinsic acetyltransferase activity. Nat Struct Mol Biol. 2013;20(6):756–762.
  • Cook C, Carlomagno Y, Gendron TF, et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet. 2014;23(1):104–116.
  • Fujiwara H, Hasegawa M, Dohmae N, et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4(2):160–164.
  • Hasegawa M, Fujiwara H, Nonaka T, et al. Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem. 2002;277(50):49071–49076.
  • Um JW, Han KA, Im E, et al. Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res. 2012;90(5):1030–1042.
  • Chung KKK, Thomas B, Li X, et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science. 2004;304(5675):1328–1331.
  • Dammer EB, Fallini C, Gozal YM, et al. Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. Plos One. 2012;7:6.
  • Cohen TJ, Hwang AW, Unger T, et al. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. Embo J. 2012;31(5):1241–1252.
  • Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–133.
  • Willis M, Patterson C. Proteotoxicity and cardiac dysfunction — alzheimer’s disease of the heart? N Engl J Med. 2013;368(5):455–464.
  • Shih H, Lee B, Lee RJ, et al. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol. 2010;57(1):9–17.
  • Tannous P, Zhu H, Nemchenko A, et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 2008;117(24):3070–3078.
  • Ayyadevara S, Mercanti F, Wang X, et al. Age- and hypertension-associated protein aggregates in mouse heart have similar proteomic profiles. Hypertension. 2016;67(5):1006–1013.
  • Su H, Li J, Menon S, et al. Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res. 2011;108(1):40–50.
  • Agnetti G, Halperin VL, Kirk JA, et al. Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res. 2014;102(1):24–34.
  • Del Monte F, Agnetti G. Protein post-translational modifications and misfolding: new concepts in heart failure. Proteomics Clin Appl. 2014;8(7–8):534–542.
  • Zhu H, Sun X, Wang D, et al. Doxycycline ameliorates aggregation of collagen and atrial natriuretic peptide in murine post-infarction heart. Eur J Pharmacol. 2015;754:66–72.
  • McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014;111(48):E5178–86.
  • Harper JD, Lieber CM, Lansbury PT Jr. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein. Chem Biol. 1997;4(12):951–959.
  • Langkilde AE, Morris KL, Serpell LC, et al. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy. Acta Crystallogr Sect D Biol Crystallogr. 2015;71:882–895.
  • Pai AS, Rubinstein I, Önyüksel H. PEGylated phospholipid nanomicelles interact with β-amyloid(1-42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro. Peptides. 2006;27(11):2858–2866.
  • Nichols MR, Moss MA, Reed DK, et al. Amyloid-beta protofibrils differ from amyloid-beta aggregates induced in dilute hexafluoroisopropanol in stability and morphology. J Biol Chem. 2005;280(4):2471–2480.
  • Parenky A, Myler H, Amaravadi L, et al. New FDA draft guidance on immunogenicity. Aaps J. 2014;16(3):499–503.
  • Hermeling S, Crommelin DJA, Schellekens H, et al. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;21(6):897–903.
  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. Aaps J. 2006;8(3):E501–E507.
  • Philo JS. A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol. 2009;10(4):359–372.
  • Teraoka I. Calibration of retention volume in size exclusion chromatograpny by hydrodynamic radius. Macromolecules. 2004;37(17):6632–6639.
  • Horneman DA, Ottens M, Keurentjes JTF, van der Wielen LAM. Surfactant-aided size-exclusion chromatography for the purification of immunoglobulin G. J Chromatogr A. 2007;1157(1–2):237–245.
  • Huang CT, Sharma D, Oma P, et al. Quantitation of protein particles in parenteral solutions using micro-flow imaging. J Pharm Sci. 2009;98(9):3058–3071.
  • Sharma KD, Peter O, Pollo MJ, et al. Quantification and characterization of subvisible proteinaceous particles in opalescent mab formulations using micro-flow imaging. J Pharm Sci. 2010;99(6):2628–2642.
  • Zambrano R, Jamroz M, Szczasiuk A, et al. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res. 2015;43(W1):W306-313.
  • Walther DM, Kasturi P, Zheng M, et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell. 2015;161(4):919–932.
  • David DC, Ollikainen N, Trinidad JC, et al. Widespread protein aggregation as an inherent part of aging in C. elegans. Plos Biol. 2010;8(8):e1000450.
  • Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093.
  • Niwa T, Ying B-W, Saito K, et al. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci U S A. 2009;106(11):4201–4206.
  • Geerlof A, Brown J, Coutard B, et al. The impact of protein characterization in structural proteomics. Acta Crystallogr Sect D Biol Crystallogr. 2006;62(10):1125–1136.
  • Jacobsen NE. NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology. Wiley 2007; ISBN: 978-0-471-73096-5.
  • Lu J-X, Qiang W, Yau W-M, et al. Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell. 2013;154(6):1257–1268.
  • Beveridge R, Chappuis Q, Macphee C, et al. Mass spectrometry methods for intrinsically disordered proteins. Analyst. 2013;138:32–42.
  • Carulla N, Zhou M, Arimon M, et al. Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation. Proc Natl Acad Sci U S A. 2009;106(19):7828–7833.
  • Lu X, Wintrode PL, Surewicz WK. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A. 2007;104(5):1510–1515.
  • Zhang Z, Smith DL. Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci. 1993;2(4):522–531.
  • Bronsoms S, Trejo SA. Applications of mass spectrometry to the study of protein aggregation. Methods Mol Biol. 2015;1258:331–345.
  • Marcoux J, Thierry E, Vivès C, et al. Investigating alternative acidic proteases for H/D exchange coupled to mass spectrometry: plasmepsin 2 but not plasmepsin 4 is active under quenching conditions. J Am Soc Mass Spectrom. 2010;21(1):76–79.
  • Cravello L, Lascoux D, Forest E. Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom. 2003;17(21):2387–2393.
  • Qi W, Zhang A, Patel D, et al. Simultaneous monitoring of peptide aggregate distributions, structure, and kinetics using amide hydrogen exchange: application to abeta (1-40) fibrillogenesis. Biotechnol Bioeng. 2008;100(6):1214–1227.
  • Arunkumar AI, Kumar TKS, Sivaraman T, et al. Acetonitrile-induced conformational transitions in poly-L-lysine. Int J Biol Macromol. 1997;21(4):299–305.
  • Bartolini M, Bertucci C, Cavrini V, et al. Beta-Amyloid aggregation induced by human acetylcholinesterase: Inhibition studies. Biochem Pharmacol. 2003;65(3):407–416.
  • Fezoui Y, Hartley DM, Harper JD, et al. An improved method of preparing the amyloid b-protein for fibrillogenesis and neurotoxicity experiments. Amyloid Int J Exp Clin Investig. 2000;7(3):166–178.
  • Tomaselli S, Esposito V, Vangone P, et al. The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem. 2006;7(2):257–267.
  • Wang G, Johnson AJ, Kaltashov IA. Evaluation of electrospray ionization mass spectrometry as a tool for characterization of small soluble protein aggregates. Anal Chem. 2012;84(3):1718–1724.
  • Muneeruddin K, Thomas JJ, Salinas PA, et al. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal Chem. 2014;86(21):10692–10699.
  • Bobst CE, Thomas JJ, Salinas PA, et al. Impact of oxidation on protein therapeutics: Conformational dynamics of intact and oxidized acid-beta-glucocerebrosidase at near-physiological pH. Protein Sci. 2010;19(12):2366–2378.
  • Zovo K, Helk E, Karafin A, et al. Label-free high-throughput screening assay for inhibitors of Alzheimer’s amyloid-β peptide aggregation based on MALDI MS. Anal Chem. 2010;82(20):8558–8565.
  • Kelly SMMM, Price NCCC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000;1(4):349–384.
  • Hu L, Olsen C, Maddux N, et al. Investigation of protein conformational stability employing a multimodal spectrometer. Anal Chem. 2011;83(24):9399–9405.
  • Garcia-Alloza M, Dodwell SA, Meyer-Luehmann M, et al. Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J Neuropathol Exp Neurol. 2006;65(11):1082–1089.
  • Ben-Zvi A, Miller EA, Morimoto RI. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci U S. 2009;106(35):14914–14919.
  • Zid BM, Rogers AN, Katewa SD, et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in drosophila. Cell. 2009;139(1):149–160.
  • Tonoki A, Kuranaga E, Tomioka T, et al. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol. 2009;29(4):1095–1106.
  • Yang DS, Stavrides P, Mohan PS, et al. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy. 2011;7(7):788–789.
  • Cohen E, Bieschke J, Perciavalle RM, et al. Opposing activities protect against age-onset proteotoxicity. Science. 2006;313(5793):1604–1610.
  • Morley JF, Brignull HR, Weyers JJ, et al. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2002;99(16):10417–10422.
  • Coughlan CM, Brodsky JL. Use of yeast as a model system to investigate protein conformational diseases. Mol Biotechnol. 2005;30(2):171–180.
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008;454(7208):1088–1095.
  • Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 1998;143(7):1883–1898.
  • Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007;21(17):2172–2181.
  • Olzmann JA, Li A, Chudaev MV, et al. Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J. Cell Biol. 2007;178(6):1025–1038.
  • Hamer G, Matilainen O, Holmberg CI. A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nat Methods. 2010;7(6):473–478.
  • Kern A, Ackermann B, Clement AM, et al. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. Plos One. 2010;5(1):e8568.
  • Bieler S, Soto C. Beta-sheet breakers for Alzheimer’s disease therapy. Curr Drug Targets. 2004;5(6):553–558.
  • Soto C, Estrada L. Amyloid inhibitors and beta-sheet breakers. Subcell Biochem. 2005;38:351–364.
  • Deshpande A, Mina E, Glabe C, et al. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci Off J Soc Neurosci. 2006;26(22):6011–6018.
  • Lin HAI, Bhatia R, Lal R. Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. Faseb J. 2001;15(13):2433–2444.
  • Nyström T. Role of oxidative carbonylation in protein quality control and senescence. Embo J. 2005;24(7):1311–1317.
  • Maharjan S, Oku M, Tsuda M, et al. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci Rep. 2014;4:5896.
  • Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2(1):411–429.
  • Gasic-Milenkovic J, Loske C, Munch G. Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. J Alzheimers Dis. 2003;5:25–30.
  • Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88–93.
  • Xue L, Rup B. Evaluation of pre-existing antibody presence as a risk factor for posttreatment anti-drug antibody induction: analysis of human clinical study data for multiple biotherapeutics. Aaps J. 2013;15(3):893–896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.