320
Views
7
CrossRef citations to date
0
Altmetric
Review

The progress and potential of proteomic biomarkers for type 1 diabetes in children

, , &
Pages 31-41 | Received 19 Sep 2016, Accepted 23 Nov 2016, Published online: 20 Dec 2016

References

  • Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–633. ​
  • Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–1300.
  • Leete P, Willcox A, Krogvold L, et al. Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65:1362–1369.
  • Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes. 1973;22:429–432.
  • Nerup J, Platz P, Andersen OO, et al. HL-A antigens and diabetes mellitus. Lancet. 1974;2:864–866.
  • Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007732.
  • Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: Advances and prospects. Nat Rev Genet. 2011;12:781–792.
  • Knip M, Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007690.
  • Purohit S, She J. Biomarkers for type 1 diabetes. Int J Clin Exp Med. 2008;1:98–116.
  • Harjutsalo V, Sund R, Knip M, et al. Incidence of type 1 diabetes in finland. Jama. 2013;310:427–428.
  • Harjutsalo V, Sjoberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in finnish children: A cohort study. Lancet. 2008;371:1777–1782.
  • Tuomilehto J. The emerging global epidemic of type 1 diabetes. Curr Diab Rep. 2013;13:795–804.
  • Ionescu-Tirgoviste C, Gagniuc PA, Gubceac E, et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep. 2015;5:14634.
  • Orci L, Ravazzola M, Amherdt M, et al. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J Cell Biol. 1986;103:2273–2281.
  • Ilonen J, Hammais A, Laine AP, et al. Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62:3636–3640.
  • Delong T, Wiles TA, Baker RL, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–714.
  • Rondas D, Crevecoeur I, D’Hertog W, et al. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes. 2015;64:573–586.
  • Roep BO. The role of T-cells in the pathogenesis of type 1 diabetes: from cause to cure. Diabetologia. 2003;46:305–321.
  • Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–181.
  • Coppieters KT. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.
  • Gysemans C, Callewaert H, Overbergh L, et al. Cytokine signalling in the beta-cell: A dual role for IFNgamma. Biochem Soc Trans. 2008;36:328–333.
  • Crevecoeur I, Rondas D, Mathieu C, et al. The beta-cell in type 1 diabetes: what have we learned from proteomic studies? Proteomics Clin Appl. 2015 Aug;9(7–8):755–766.
  • Dudek NL, Purcell AW. The beta cell immunopeptidome. Vitam Horm. 2014;95:115–144.
  • Van Lummel M, Van Veelen PA, De Ru AH, et al. Discovery of a selective islet peptidome presented by the highest-risk HLA-DQ8trans molecule. Diabetes. 2016;65:732–741.
  • Hummel S, Ziegler AG. Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies. Am J Clin Nutr. 2011;94:1821S–1823S.
  • Kupila A, Muona P, Simell T, et al. Feasibility of genetic and immunological prediction of type I diabetes in a population-based birth cohort. Diabetologia. 2001;44:290–297.
  • Larsson K, Elding-Larsson H, Cederwall E, et al. Genetic and perinatal factors as risk for childhood type 1 diabetes. Diabetes Metab Res Rev. 2004;20:429–437.
  • TEDDY Study Group. The environmental determinants of diabetes in the young (TEDDY) study. Ann N Y Acad Sci. 2008;1150:1–13.
  • Wherrett DK. Trials in the prevention of type 1 diabetes: current and future. Can J Diabetes. 2014;38:279–284.
  • Knip M, Akerblom HK, Becker D, et al. Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. Jama. 2014;311:2279–2287.
  • Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. Jama. 2013;309:2473–2479.
  • Koskinen MK, Helminen O, Matomaki J, et al. Reduced beta-cell function in early preclinical type 1 diabetes. Eur J Endocrinol. 2016;174:251–259.
  • Helminen O, Aspholm S, Pokka T, et al. HbA1c predicts time to diagnosis of type 1 diabetes in children at risk. Diabetes. 2015;64:1719–1727.
  • Heinonen MT, Moulder R, Lahesmaa R. New insights and biomarkers for type 1 diabetes: review for scandinavian journal of immunology. Scand J Immunol. 2015;82:244–253.
  • Moulder R, Bhosale SD, Erkkila T, et al. Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes. 2015;64:2265–2278.
  • Elo LL, Mykkanen J, Nikula T, et al. Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun. 2010;35:70–76.
  • Kallionpaa H, Elo LL, Laajala E, et al. Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes. 2014;63:2402–2414.
  • Oresic M, Simell S, Sysi-Aho M, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008;205:2975–2984.
  • Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. Isme J. 2011;5:82–91.
  • Kallionpaa H, Laajala E, Oling V, et al. Standard of hygiene and immune adaptation in newborn infants. Clin Immunol. 2014;155:136–147.
  • Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17:260–273.
  • Vatanen T, Kostic A, d’Hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165:842–853.
  • Sparre T, Larsen MR, Heding PE, et al. Unraveling the pathogenesis of type 1 diabetes with proteomics: present and future directions. Mol Cell Proteomics. 2005;4:441–457.
  • Metz TO, Qian WJ, Jacobs JM, et al. Application of proteomics in the discovery of candidate protein biomarkers in a diabetes autoantibody standardization program sample subset. J Proteome Res. 2008;7:698–707.
  • Roveri A, Zaccarin M, Pagetta AT, et al. Proteomic investigation on Grp94-IgG complexes circulating in plasma of type 1 diabetic subjects. J Diabetes Res. 2015;2015:815839.
  • Massa O, Alessio M, Russo L, et al. Serological proteome analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J Proteomics. 2013;82:263–273.
  • Albrethsen J, Kaas A, Schonle E, et al. Evaluation of a type 1 diabetes serum cohort by SELDI-TOF MS protein profiling. F. Proteomics Clin Appl. 2009;3:383–393. ​
  • Zhi W, Sharma A, Purohit S, et al. Discovery and validation of serum protein changes in type 1 diabetes patients using high throughput two dimensional liquid chromatography-mass spectrometry and immunoassays. Mol Cell Proteomics. 2011;10:M111.012203.
  • Zhang Q, Fillmore TL, Schepmoes AA, et al. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med. 2013;210:191–203.
  • Von Toerne C, Laimighofer M, Achenbach P, et al. 2016. Peptide serum markers in islet autoantibody-positive children. Diabetologia. Nov 4. [Epub ahead of print]. ​
  • Burch TC, Morris MA, Campbell-Thompson M, et al. Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. Plos One. 2015;10:e0135663.
  • Liu C, Atkinson MA, Zhang Q. Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile. Proteomics. 2016;16:1432–1446.
  • Caseiro A, Ferreira R, Padrao A, et al. Salivary proteome and peptidome profiling in type 1 diabetes mellitus using a quantitative approach. J Proteome Res. 2013;12:1700–1709.
  • Meier M, Kaiser T, Herrmann A, et al. Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. J Diabetes Complications. 2005;19:223–232.
  • Schvartz D, Bergsten P, Baek K-H, et al. The human diabetes proteome project (HDPP): The 2014 update. Translational Proteomics. 2015;8-9:1–7.
  • Suh MJ, Tovchigrechko A, Thovarai V, et al. Quantitative differences in the urinary proteome of siblings discordant for type 1 diabetes include lysosomal enzymes. J Proteome Res. 2015;14:3123–3135.
  • Topf F, Schvartz D, Gaudet P, et al. The human diabetes proteome project (HDPP): from network biology to targets for therapies and prevention. Translational Proteomics. 2013;1:3–11.
  • Bergsten P. Islet protein profiling. Diabetes Obes Metab. 2009;11(Suppl 4):97–117.
  • Hu L, Evers S, Lu ZH, et al. Two-dimensional protein database of human pancreas. Electrophoresis. 2004;25:512–518.
  • Ahmed M, Forsberg J, Bergsten P. Protein profiling of human pancreatic islets by two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res. 2005;4:931–940.
  • Metz TO, Jacobs JM, Gritsenko MA, et al. Characterization of the human pancreatic islet proteome by two-dimensional LC/MS/MS. J Proteome Res. 2006 Dec;5(12):3345–3354.
  • Krogvold L, Edwin B, Buanes T, et al. Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia. 2014;57:841–843.
  • Krogvold L, Skog O, Sundstrom G, et al. Function of isolated pancreatic islets from patients at onset of type 1 diabetes; insulin secretion can be restored after some days in a non-diabetogenic environment in vitro. results from the DiViD study. Diabetes. 2015 Jul;64(7):2506–2512.
  • Guo T, Kouvonen P, Koh CC, et al. Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat Med. 2015;21:407–413.
  • Green-Mitchell SM, Cazares LH, Semmes OJ, et al. On-tissue identification of insulin: in situ reduction coupled with mass spectrometry imaging. Proteomics Clin Appl. 2011;5:448–453.
  • Jorns A, Arndt T, Meyer Zu Vilsendorf A, et al. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes. Diabetologia. 2014;57:512–521.
  • Rondas D, Bugliani M, D’Hertog W, et al. Glucagon-like peptide-1 protects human islets against cytokine-mediated beta-cell dysfunction and death: a proteomic study of the pathways involved. J Proteome Res. 2013;12:4193–4206.
  • Klareskog L, Amara K, Malmstrom V. Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:72–79.
  • McLaughlin RJ, Spindler MP, Van Lummel M, et al. Where, how, and when: positioning posttranslational modification within type 1 diabetes pathogenesis. Curr Diab Rep. 2016;16:1–9.
  • Walker LS, Von Herrath M. CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol. 2016;183:16–29.
  • Mannering SI, Harrison LC, Williamson NA, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202:1191–1197.
  • Van Lummel M, Duinkerken G, Van Veelen PA, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2013;63:237–247.
  • Pasa-Tolic L, Masselon C, Barry RC, et al. Proteomic analyses using an accurate mass and time tag strategy. Biotechniques. 2004;37:621-4, 626-33, 636 passim.
  • Zhi W, Purohit S, Carey C, et al. Proteomic technologies for the discovery of type 1 diabetes biomarkers. J Diabetes Sci Technol. 2010;4:993–1002.
  • Purohit S, Podolsky R, Schatz D, et al. Assessing the utility of SELDI-TOF and model averaging for serum proteomic biomarker discovery. Proteomics. 2006;6:6405–6415.
  • Carmichael SK, Johnson SB, Baughcum A, et al. Prospective assessment in newborns of diabetes autoimmunity (PANDA): maternal understanding of infant diabetes risk. Genet Med. 2003;5:77–83.
  • Miersch S, Bian X, Wallstrom G, et al. Serological autoantibody profiling of type 1 diabetes by protein arrays. J Proteomics. 2013;94:486–496.
  • Bian X, Wallstrom G, Davis A, et al. Immunoproteomic profiling of antiviral antibodies in new-onset type 1 diabetes using protein arrays. Diabetes. 2016;65:285–296.
  • Laitinen OH, Honkanen H, Pakkanen O, et al. Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes. 2014;63:446–455.
  • McLaughlin KA, Richardson CC, Ravishankar A, et al. Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes. 2016 Jun;65(6):1690–1698.
  • McGuire JN, Eising S, Wagner AM, et al. Screening newborns for candidate biomarkers of type 1 diabetes. Arch Physiol Biochem. 2010;116:227–232.
  • Keshishian H, Burgess MW, Gillette MA, et al. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol Cell Proteomics. 2015;14:2375–2393.
  • Moore PA, Guggenheimer J, Etzel KR, et al. Type 1 diabetes mellitus, xerostomia, and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:281–291.
  • Cabras T, Pisano E, Mastinu A, et al. Alterations of the salivary secretory peptidome profile in children affected by type 1 diabetes. Mol Cell Proteomics. 2010;9:2099–2108.
  • Kuehl MN, Rodriguez H, Burkhardt BR, et al. Tumor necrosis factor-alpha, matrix-metalloproteinases 8 and 9 levels in the saliva are associated with increased hemoglobin A1c in type 1 diabetes subjects. Plos One. 2015;10:e0125320.
  • Wisniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–362.
  • Hebert AS, Richards AL, Bailey DJ, et al. The one hour yeast proteome. Mol Cell Proteomics. 2014;13:339–347.
  • Chapman JD, Goodlett DR, Masselon CD. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev. 2014;33:452–470.
  • Shi T, Song E, Nie S, et al. Advances in targeted proteomics and applications to biomedical research. Proteomics. 2016 Aug;16(15–16):2160–2182.
  • Kusebauch U, Campbell DS, Deutsch EW, et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016 Jul 28;166(3):766–778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.