295
Views
12
CrossRef citations to date
0
Altmetric
Review

Progress and pitfalls in finding the ‘missing proteins’ from the human proteome map

, , &
Pages 9-14 | Received 20 Oct 2016, Accepted 23 Nov 2016, Published online: 02 Dec 2016

References

  • Legrain P, Aebersold R, Archakov A, et al. The human proteome project: current state and future direction. Mol Cell Proteomics. 2011;10(7):mcp.O111.009993.
  • Paik Y-K, Omenn GS, Overall CM, et al. Recent advances in the chromosome-centric human proteome project: missing proteins in the spot light. J Proteome Res. 2015;14(9):3409–3414.
  • Paik Y-K, Omenn GS, Uhlen M, et al. Standard Guidelines for the Chromosome-Centric Human Proteome Project. J Proteome Res. 2012;11(4):2005–2013.
  • Paik Y-K, Jeong S-K, Omenn GS, et al. The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nat Biotechnol. 2012;30(3):221–223.
  • Aebersold R, Bader GD, Edwards AM, et al. Highlights of B/D-HPP and HPP resource pillar workshops at 12th Annual HUPO world congress of proteomics: september 14-18, 2013, Yokohama, Japan. Proteomics. 2014;14(9):975–988.
  • Aebersold R, Bader GD, Edwards AM, et al. The biology/disease-driven human proteome project (B/D-HPP): enabling protein research for the life sciences community. J Proteome Res. 2013;12(1):23–27.
  • Vizcaíno JA, Csordas A, Del-Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;In press.
  • Gaudet P, Argoud-Puy G, Cusin I, et al. neXtProt: organizing protein knowledge in the context of human proteome projects. J Proteome Res. 2013;12(1):293–298.
  • Lane L, Argoud-Puy G, Britan A, et al. neXtProt: a knowledge platform for human proteins. Nucleic Acids Res. 2012;40(Database issue):D76–83.
  • Marko-Varga G, Omenn GS, Paik Y-K, et al. A first step toward completion of a genome-wide characterization of the human proteome. J Proteome Res. 2013;12(1):1–5.
  • Kim M-S, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502):575–581.
  • Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–587.
  • Deutsch EW, Overall CM, Van Eyk JE, et al. Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. J Proteome Res Acs Jproteome. 2016;15(11):3961–3970.
  • Omenn GS, Lane L, Lundberg EK, et al. Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. J Proteome Res Acs Jproteome. 2016;15(11):3951–3960.
  • Cho J-Y, Lee H-J, Jeong S-K, et al. Combination of multiple spectral libraries improves the current search methods used to identify missing proteins in the chromosome-centric human proteome project. J Proteome Res. 2015;14(12):4959–4966.
  • Choong W-K, Chang H-Y, Chen C-T, et al. Informatics view on the challenges of identifying missing proteins from shotgun proteomics. J Proteome Res. 2015;14(12):5396–5407.
  • Kumar D, Jain A, Dash D. Probing the missing human proteome: a computational perspective. J Proteome Res. 2015;14(12):4949–4958.
  • Carapito C, Lane L, Benama M, et al. Computational and mass-spectrometry-based workflow for the discovery and validation of missing human proteins: application to chromosomes 2 and 14. J Proteome Res. 2015;14(9):3621–3634.
  • Garin-Muga A, Odriozola L, Martínez-Val A, et al. Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence. J Proteome Res Acs Jproteome. 2016;15(11):4101–4115.
  • Chen C, Liu X, Zheng W, et al. Screening of missing proteins in the human liver proteome by improved MRM-approach-based targeted proteomics. J Proteome Res. 2014;13(4):1969–1978.
  • Landry CR, Zhong X, Nielly-Thibault L, et al. Found in translation: functions and evolution of a recently discovered alternative proteome. Curr Opin Struct Biol. 2015;32:74–80.
  • Dong Q, Menon R, Omenn GS, et al. Structural bioinformatics inspection of neXtProt PE5 proteins in the human proteome. J Proteome Res. 2015;14(9):3750–3761.
  • Su N, Zhang C, Zhang Y, et al. Special enrichment strategies greatly increase the efficiency of missing proteins identification from regular proteome samples. J Proteome Res. 2015;14(9):3680–3692.
  • Zhao M, Wei W, Cheng L, et al. Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process. J Proteome Res Acs Jproteome. 2016;15(11):4020–4029.
  • Muraoka S, Kume H, Adachi J, et al. In-depth membrane proteomic study of breast cancer tissues for the generation of a chromosome-based protein list. J Proteome Res. 2013;12(1):208–213.
  • Chen Y, Li Y, Zhong J, et al. Identification of missing proteins defined by chromosome-centric proteome project in the cytoplasmic detergent-insoluble proteins. J Proteome Res. 2015;14(9):3693–3709.
  • Vit O, Man P, Kadek A, et al. Large-scale identification of membrane proteins based on analysis of trypsin-protected transmembrane segments. J Proteomics. 2016;149:15–22.
  • Xu A, Li G, Yang D, et al. Evolutionary characteristics of missing proteins: insights into the evolution of human chromosomes related to missing-protein-encoding genes. J Proteome Res. 2015;14(12):4985–4994.
  • Guruceaga E, Sanchez Del Pino MM, Corrales FJ, et al. Prediction of a missing protein expression map in the context of the human proteome project. J Proteome Res. 2015;14(3):1350–1360.
  • Zhang C, Li N, Zhai L, et al. Systematic analysis of missing proteins provides clues to help define all of the protein-coding genes on human chromosome 1. J Proteome Res. 2014;13(1):114–125.
  • Pinto SM, Manda SS, Kim M-S, et al. Functional annotation of proteome encoded by human chromosome 22. J Proteome Res. 2014;13(6):2749–2760.
  • Liu Y, Ying W, Ren Z, et al. Chromosome-8-Coded Proteome of Chinese Chromosome proteome data set (CCPD) 2.0 with partial immunohistochemical verifications. J Proteome Res. 2014;13(1):126–136.
  • Yang L, Lian X, Zhang W, et al. Finding missing proteins from the epigenetically manipulated human cell with stringent quality criteria. J Proteome Res. 2015;14(9):3645–3657.
  • Duek P, Bairoch A, Gateau A, et al. Missing Protein Landscape of Human Chromosomes 2 and 14: Progress and Current Status. J Proteome Res Acs Jproteome. 2016;15(11):3971–3978.
  • Jumeau F, Com E, Lane L, et al. Human spermatozoa as a model for detecting missing proteins in the context of the chromosome-centric human proteome project. J Proteome Res. 2015;14(9):3606–3620.
  • Vandenbrouck Y, Lane L, Carapito C, et al. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. J Proteome Res Acs Jproteome. 2016;15(11):3998–4019.
  • Zhang Y, Li Q, Wu F, et al. Tissue-based proteogenomics reveals that human testis endows plentiful missing proteins. J Proteome Res. 2015;14(9):3583–3594.
  • Eckhard U, Marino G, Abbey SR, et al. The human dental pulp proteome and N-terminome: levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in the human proteome project in underexplored tissues. J Proteome Res. 2015;14(9):3568–3582.
  • Ranganathan S, Khan JM, Garg G, et al. Functional annotation of the human chromosome 7 “missing” proteins: a bioinformatics approach. J Proteome Res. 2013;12(6):2504–2510.
  • Islam MT, Garg G, Hancock WS, et al. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the “missing” human proteome. J Proteome Res. 2014;13(1):76–83.
  • Uhlen M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419–1260419.
  • Kusebauch U, Campbell DS, Deutsch EW, et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell. 2016;166(3):766–778.
  • Paik Y-K, Overall CM, Deutsch EW, et al. Progress in the chromosome-centric human proteome project as highlighted in the annual special issue IV. J Proteome Res. 2016;15(11):3945–3950.
  • Segura V, Medina-Aunon JA, Mora MI, et al. Surfing transcriptomic landscapes. A step beyond the annotation of chromosome 16 proteome. J Proteome Res. 2014;13(1):158–172.
  • Horvatovich P, Végvári Á, Saul J, et al. In vitro transcription/translation system: a versatile tool in the search for missing proteins. J Proteome Res. 2015;14(9):3441–3451.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.