1,242
Views
7
CrossRef citations to date
0
Altmetric
Review

Presynaptic Calmodulin targets: lessons from structural proteomics

, , , , &
Pages 223-242 | Received 27 Sep 2016, Accepted 20 Dec 2016, Published online: 20 Feb 2017

References

  • Burgoyne RD. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci. 2007;8(3):182–193.
  • Kreutz MR, Naranjo JR, Koch KW, et al. The neuronal functions of EF-hand Ca2+-binding proteins. Front Mol Neurosci. 2012;5:92.
  • Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem. 2011;118(5):695–713.
  • Davis TN, Thorner J. Vertebrate and yeast calmodulin, despite significant sequence divergence, are functionally interchangeable. Proc Natl Acad Sci U S A. 1989;86(20):7909–7913.
  • Biber A, Schmid G, Hempel K. Calmodulin content in specific brain areas. Exp Brain Res. 1984;56(2):323–326.
  • Cimler BM, Andreasen TJ, Andreasen KI, et al. P-57 is a neural specific calmodulin-binding protein. J Biol Chem. 1985;260(19):10784–10788.
  • Kakiuchi S, Yasuda S, Yamazaki R, et al. Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J Biochem. 1982;92(4):1041–1048.
  • Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim Biophys Acta. 2014;1843(2):398–435.
  • Chou JJ, Li S, Klee CB, et al. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol. 2001;8(11):990–997.
  • Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10(8):322–328.
  • Tidow H, Nissen P. Structural diversity of calmodulin binding to its target sites. Febs J. 2013;280(21):5551–5565.
  • Kursula P. The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids. 2014;46(10):2295–2304.
  • Villarroel A, Taglialatela M, Bernardo-Seisdedos G, et al. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. J Mol Biol. 2014;426(15):2717–2735.
  • Radivojac P, Vucetic S, O’Connor TR, et al. Calmodulin signaling: analysis and prediction of a disorder-dependent molecular recognition. Proteins. 2006;63(2):398–410.
  • Yap KL, Kim J, Truong K, et al. Calmodulin target database. J Struct Funct Genomics. 2000;1(1):8–14.
  • Chou KC. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr Proteomics. 2009;6(4):262–274.
  • Liu B, Liu F, Wang X, et al. Pse-in-one: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015;43(W1):W65–71.
  • Dunlap TB, Guo HF, Cook EC, et al. Stoichiometry of the calcineurin regulatory domain-calmodulin complex. Biochemistry. 2014;53(36):5779–5790.
  • Rellos P, Pike AC, Niesen FH, et al. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. Plos Biol. 2010;8(7):e1000426.
  • Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol. 2010;2(12):a004010.
  • Ikura M, Clore GM, Gronenborn AM, et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992;256(5057):632–638.
  • Meador WE, Means AR, Quiocho FA. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science. 1992;257(5074):1251–1255.
  • Meador WE, Means AR, Quiocho FA. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 1993;262(5140):1718–1721.
  • Tripathi S, Waxham MN, Cheung MS, et al. Lessons in protein design from combined evolution and conformational dynamics. Sci Rep. 2015;5:14259.
  • Xu XZ, Wes PD, Chen H, et al. Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem. 1998;273(47):31297–31307.
  • Shen X, Valencia CA, Szostak JW, et al. Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci U S A. 2005;102(17):5969–5974.
  • Berggard T, Arrigoni G, Olsson O, et al. 140 mouse brain proteins identified by Ca2+-calmodulin affinity chromatography and tandem mass spectrometry. J Proteome Res. 2006;5(3):669–687.
  • O’Connell DJ, Bauer MC, O’Brien J, et al. Integrated protein array screening and high throughput validation of 70 novel neural calmodulin-binding proteins. Mol Cell Proteomics. 2010;9(6):1118–1132.
  • Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509–547.
  • Lou X, Scheuss V, Schneggenburger R. Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature. 2005;435(7041):497–501.
  • Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861–872.
  • Wojcik SM, Brose N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron. 2007;55(1):11–24.
  • Faas GC, Raghavachari S, Lisman JE, et al. Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci. 2011;14(3):301–304.
  • Timofeeva Y, Volynski KE. Calmodulin as a major calcium buffer shaping vesicular release and short-term synaptic plasticity: facilitation through buffer dislocation. Front Cell Neurosci. 2015;9:239.
  • Pang ZP, Cao P, Xu W, et al. Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J Neurosci. 2010;30(11):4132–4142.
  • Pang ZP, Xu W, Cao P, et al. Calmodulin suppresses synaptotagmin-2 transcription in cortical neurons. J Biol Chem. 2010;285(44):33930–33939.
  • Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci. 2005;6(4):267–276.
  • Hilfiker S, Pieribone VA, Nordstedt C, et al. Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem. 1999;73(3):921–932.
  • Popoli M. Synaptotagmin is endogenously phosphorylated by Ca2+/calmodulin protein kinase II in synaptic vesicles. FEBS Lett. 1993;317(1–2):85–88.
  • De Jong AP, Meijer M, Saarloos I, et al. Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc Natl Acad Sci U S A. 2016;113(18):5095–5100.
  • Liu H, Bai H, Hui E, et al. Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment. Elife. 2014;3:e01524.
  • Igarashi M, Watanabe M. Roles of calmodulin and calmodulin-binding proteins in synaptic vesicle recycling during regulated exocytosis at submicromolar Ca2+ concentrations. Neurosci Res. 2007;58(3):226–233.
  • Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature. 2012;490(7419):201–207.
  • Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.
  • Sun T, Wu XS, Xu J, et al. The role of calcium/calmodulin-activated calcineurin in rapid and slow endocytosis at central synapses. J Neurosci. 2010;30(35):11838–11847.
  • Yao L, Sakaba T. Activity-dependent modulation of endocytosis by calmodulin at a large central synapse. Proc Natl Acad Sci U S A. 2012;109(1):291–296.
  • Yue HY, Xu J. Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse. J Neurosci. 2014;34(1):295–304.
  • Okamoto Y, Lipstein N, Hua Y, et al. Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of held terminal of rats and mice. Elife. 2016;5:e14643.
  • Sakaba T, Neher E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron. 2001;32(6):1119–1131.
  • Junge HJ, Rhee J-S, Jahn O, et al. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell. 2004;118(3):389–401.
  • Lipstein N, Schaks S, Dimova K, et al. Nonconserved Ca(2+)/calmodulin binding sites in Munc13s differentially control synaptic short-term plasticity. Mol Cell Biol. 2012;32(22):4628–4641.
  • Lipstein N, Sakaba T, Cooper BH, et al. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca(2+)-calmodulin-Munc13-1 signaling. Neuron. 2013;79(1):82–96.
  • Adelman JP. SK channels and calmodulin. Channels. 2016;10(1):1–6.
  • Hammer JA 3rd, Wagner W. Functions of class V myosins in neurons. J Biol Chem. 2013;288(40):28428–28434.
  • Watanabe M, Nomura K, Ohyama A, et al. Myosin-va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell. 2005;16(10):4519–4530.
  • Schluter OM, Basu J, Sudhof TC, et al. Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci. 2006;26(4):1239–1246.
  • Park JB, Farnsworth CC, Glomset JA. Ca2+/calmodulin causes Rab3A to dissociate from synaptic membranes. J Biol Chem. 1997;272(33):20857–20865.
  • Schluter OM, Khvotchev M, Jahn R, et al. Localization versus function of Rab3 proteins. Evidence for a common regulatory role in controlling fusion. J Biol Chem. 2002;277(43):40919–40929.
  • Coppola T, Perret-Menoud V, Luthi S, et al. Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. Embo J. 1999;18(21):5885–5891.
  • De Haro L, Ferracci G, Opi S, et al. Ca2+/calmodulin transfers the membrane-proximal lipid-binding domain of the v-SNARE synaptobrevin from cis to trans bilayers. Proc Natl Acad Sci U S A. 2004;101(6):1578–1583.
  • Quetglas S, Iborra C, Sasakawa N, et al. Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. Embo J. 2002;21(15):3970–3979.
  • Siddiqui TJ, Vites O, Stein A, et al. Determinants of synaptobrevin regulation in membranes. Mol Biol Cell. 2007;18(6):2037–2046.
  • Di Giovanni J, Iborra C, Maulet Y, et al. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem. 2010;285(31):23665–23675.
  • Wang D, Epstein D, Khalaf O, et al. Ca2+-Calmodulin regulates SNARE assembly and spontaneous neurotransmitter release via v-ATPase subunit V0a1. J Cell Biol. 2014;205(1):21–31.
  • Zhang W, Wang D, Volk E, et al. V-ATPase V0 sector subunit a1 in neurons is a target of calmodulin. J Biol Chem. 2008;283(1):294–300.
  • Korber C, Horstmann H, Venkataramani V, et al. Modulation of presynaptic release probability by the vertebrate-specific protein mover. Neuron. 2015;87(3):521–533.
  • Bacaj T, Wu D, Yang X, et al. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron. 2013;80(4):947–959.
  • Jackman SL, Turecek J, Belinsky JE, et al. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature. 2016;529(7584):88–91.
  • Brose N, Hofmann K, Hata Y, et al. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem. 1995;270(42):25273–25280.
  • Koch H, Hofmann K, Brose N. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J. 2000;349(Pt 1):247–253.
  • Cooper B, Hemmerlein M, Ammermuller J, et al. Munc13-independent vesicle priming at mouse photoreceptor ribbon synapses. J Neurosci. 2012;32(23):8040–8052.
  • Vogl C, Cooper BH, Neef J, et al. Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells. J Cell Sci. 2015;128(4):638–644.
  • Imig C, Min SW, Krinner S, et al. The morphological and molecular nature of synaptic vesicle priming at presynaptic active zones. Neuron. 2014;84(2):416–431.
  • Ma C, Su L, Seven AB, et al. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science. 2013;339(6118):421–425.
  • Siksou L, Varoqueaux F, Pascual O, et al. A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur J Neurosci. 2009;30(1):49–56.
  • Yang X, Wang S, Sheng Y, et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat Struct Mol Biol. 2015;22(7):547–554.
  • Varoqueaux F, Sigler A, Rhee J-S, et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc Natl Acad Sci U S A. 2002;99(13):9037–9042.
  • Betz A, Ashery U, Rickmann M, et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998;21(1):123–136.
  • Rhee J-S, Betz A, Pyott S, et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell. 2002;108(1):121–133.
  • Shin OH, Lu J, Rhee JS, et al. Munc13 C2B domain is an activity-dependent Ca2+ regulator of synaptic exocytosis. Nat Struct Mol Biol. 2010;17(3):280–288.
  • Fioravante D, Regehr WG. Short-term forms of presynaptic plasticity. Curr Opin Neurobiol. 2011;21(2):269–274.
  • Regehr WG. Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol. 2012;4(7):a005702.
  • Hennig MH. Theoretical models of synaptic short term plasticity. Front Comput Neurosci. 2013;7:45.
  • Rosenmund C, Sigler A, Augustin I, et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron. 2002;33(3):411–424.
  • Lipstein N, Verhoeven-Duif NM, Michelassi FE, et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J Clin Invest. 2017. doi:10.1172/JCI90259.
  • Engel AG, Selcen D, Shen XM, et al. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2(5):e105.
  • Dorman G, Prestwich GD. Benzophenone photophores in biochemistry. Biochemistry. 1994;33:5661–5673.
  • Jahn O, Eckart K, Brauns O, et al. The binding protein of corticotropin-releasing factor: ligand-binding site and subunit structure. Proc Natl Acad Sci U S A. 2002;99(19):12055–12060.
  • Dimova K, Kawabe H, Betz A, et al. Characterization of the Munc13-calmodulin interaction by photoaffinity labeling. Biochim Biophys Acta. 2006;1763(11):1256–1265.
  • Dimova K, Kalkhof S, Pottratz I, et al. Structural insights into the calmodulin-Munc13 interaction obtained by cross-linking and mass spectrometry. Biochemistry. 2009;48(25):5908–5921.
  • Leitner A, Walzthoeni T, Kahraman A, et al. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics. 2010;9(8):1634–1649.
  • Liu F, Heck AJ. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry. Curr Opin Struct Biol. 2015;35:100–108.
  • Petrotchenko EV, Borchers CH. Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev. 2010;29(6):862–876.
  • Rappsilber J. The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol. 2011;173(3):530–540.
  • Robinette D, Neamati N, Tomer KB, et al. Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev Proteomics. 2006;3(4):399–408.
  • Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev. 2006;25(4):663–682.
  • Sinz A. The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Rev Proteomics. 2014;11(6):733–743.
  • Vodovozova E. Photoaffinity labeling and its application in structural biology. Biochemistry. 2007;72(1):1–20.
  • Müller DR, Schindler P, Towbin H, et al. Isotope-tagged cross-linking reagents. A new tool in mass spectrometric protein interaction analysis. Anal Chem. 2001;73(9):1927–1934.
  • Pettelkau J, Ihling CH, Frohberg P, et al. Reliable identification of cross-linked products in protein interaction studies by 13C-labeled p-benzoylphenylalanine. J Am Soc Mass Spectrom. 2014;25(9):1628–1641.
  • Arlt C, Götze M, Ihling CH, et al. Integrated workflow for structural proteomics studies based on cross-linking/mass spectrometry with an MS/MS cleavable cross-linker. Anal Chem. 2016;88(16):7930–7937.
  • Clavier S, Bolbach G, Sachon E. Photocross-linked peptide-protein complexes analysis: a comparative study of CID and ETD fragmentation modes. J Am Soc Mass Spectrom. 2015;26(6):1014–1026.
  • Giese SH, Belsom A, Rappsilber J. Optimized fragmentation regime for diazirine photo-cross-linked peptides. Anal Chem. 2016;88(16):8239–8247.
  • Kage R, Leeman SE, Krause JE, et al. Identification of methionine as the site of covalent attachment of a p-benzoyl-phenylalanine-containing analogue of substance P on the substance P (NK-1) receptor. J Biol Chem. 1996;271(42):25797–25800.
  • O’Neil KT, DeGrado WF. How calmodulin binds its targets: sequence independent recognition of amphiphilic [alpha]-helices. Trends Biochem Sci. 1990;15(2):59–64.
  • Rodriguez-Castaneda F, Maestre-Martinez M, Coudevylle N, et al. Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short-term synaptic plasticity. Embo J. 2010;29(3):680–691.
  • Hu Z, Tong XJ, Kaplan JM. UNC-13L, UNC-13S, and tomosyn form a protein code for fast and slow neurotransmitter release in Caenorhabditis elegans. Elife. 2013;2:e00967.
  • Lu J, Machius M, Dulubova I, et al. Structural basis for a Munc13-1 homodimer to Munc13-1/RIM heterodimer switch. Plos Biol. 2006;4(7):e192.
  • Shen N, Guryev O, Rizo J. Intramolecular occlusion of the diacylglycerol-binding site in the C1 domain of munc13-1. Biochemistry. 2005;44(4):1089–1096.
  • Herbst S, Maucher D, Schneider M, et al. Munc13-like skMLCK variants cannot mimic the unique calmodulin binding mode of Munc13 as evidenced by chemical cross-linking and mass spectrometry. Plos One. 2013;8(10):e75119.
  • Mehmood S, Allison TM, Robinson CV. Mass spectrometry of protein complexes: from origins to applications. Annu Rev Phys Chem. 2015;66:453–474.
  • Ly T, Julian RR. Protein–metal interactions of Calmodulin and α-Synuclein monitored by selective noncovalent adduct protein probing mass spectrometry. J Am Soc Mass Spectrom. 2008;19(11):1663–1672.
  • Nemirovskiy OV, Ramanathan R, Gross ML. Investigation of calcium-induced, noncovalent association of calmodulin with melittin by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 1997;8(8):809–812.
  • Pan J, Konermann L. Calcium-induced structural transitions of the Calmodulin−Melittin system studied by electrospray mass spectrometry: conformational subpopulations and metal-unsaturated intermediates. Biochemistry. 2010;49(16):3477–3486.
  • Pukala TL, Urathamakul T, Watt SJ, et al. Binding studies of nNOS-active amphibian peptides and Ca2+ calmodulin, using negative ion electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:3501–3509.
  • Shirran S, Garnaud P, Daff S, et al. The formation of a complex between calmodulin and neuronal nitric oxide synthase is determined by ESI-MS. J R Soc Interface. 2005;2(5):465–476.
  • Watt SJ, Oakley A, Sheil MM, et al. Comparison of negative and positive ion electrospray ionization mass spectra of calmodulin and its complex with trifluoperazine. Rapid Commun Mass Spectrom. 2005;19(15):2123–2130.
  • Bleiholder C, Dupuis NF, Wyttenbach T, et al. Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat Chem. 2011;3(2):172–177.
  • Bohrer BC, Merenbloom SI, Koeniger SL, et al. Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:293–327.
  • Pagel K, Natan E, Hall Z, et al. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew Chem Int Ed Engl. 2013;52(1):361–365.
  • Ruotolo BT, Giles K, Campuzano I, et al. Evidence for macromolecular protein rings in the absence of bulk water. Science. 2005;310(5754):1658–1661.
  • Uetrecht C, Rose RJ, van Duijn E, et al. Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev. 2010;39(5):1633–1655.
  • Zhong Y, Hyung SJ, Ruotolo BT. Ion mobility-mass spectrometry for structural proteomics. Expert Rev Proteomics. 2012;9(1):47–58.
  • Bush MF, Hall Z, Giles K, et al. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal Chem. 2010;82(22):9557–9565.
  • Hu P, Ye Q-Z, Loo JA. Calcium stoichiometry determination for calcium binding proteins by electrospray ionization mass spectrometry. Anal Chem. 1994;66(23):4190–4194.
  • Faull PA, Korkeila KE, Kalapothakis JM, et al. Gas-phase metalloprotein complexes interrogated by ion mobility-mass spectrometry. Int J Mass Spectrom. 2009;283(1–3):140–148.
  • Kuboniwa H, Tjandra N, Grzesiek S, et al. Solution structure of calcium-free calmodulin. Nat Struct Mol Biol. 1995;2(9):768–776.
  • Bertini I, Del Bianco C, Gelis I, et al. Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci U S A. 2004;101(18):6841–6846.
  • Babu YS, Bugg CE, Cook WJ. Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol. 1988;204(1):191–204.
  • Fallon JL, Quiocho FA. A closed compact structure of native Ca2+-Calmodulin. Structure. 2003;11(10):1303–1307.
  • Wyttenbach T, Grabenauer M, Thalassinos K, et al. The effect of calcium ions and peptide ligands on the relative stabilities of the Calmodulin dumbbell and compact structures. J Phys Chem B. 2010;114(1):437–447.
  • Calabrese AN, Speechley LA, Pukala TL. Characterisation of Calmodulin structural transitions by ion mobility mass spectrometry. Aust J Chem. 2012;65(5):504–511.
  • Elshorst B, Hennig M, Försterling H, et al. NMR solution structure of a complex of Calmodulin with a binding peptide of the Ca2+ pump. Biochemistry. 1999;38(38):12320–12332.
  • Calabrese AN, Bowie JH, Pukala TL. Structural analysis of Calmodulin binding by nNOS inhibitory amphibian peptides. Biochemistry. 2015;54(2):567–576.
  • Allen SJ, Giles K, Gilbert T, et al. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst. 2016;141(3):884–891.
  • Ruotolo BT, Benesch JL, Sandercock AM, et al. Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc. 2008;3(7):1139–1152.
  • Zoldak G, Rief M. Force as a single molecule probe of multidimensional protein energy landscapes. Curr Opin Struct Biol. 2013;23(1):48–57.
  • Hubbell WL, Lopez CJ, Altenbach C, et al. Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 2013;23(5):725–733.
  • Ji M, Ruthstein S, Saxena S. Paramagnetic metal ions in pulsed ESR distance distribution measurements. Acc Chem Res. 2014;47(2):688–695.
  • Sahu ID, McCarrick RM, Lorigan GA. Use of electron paramagnetic resonance to solve biochemical problems. Biochemistry. 2013;52(35):5967–5984.
  • Astashkin AV, Chen L, Zhou X, et al. Pulsed electron paramagnetic resonance study of domain docking in neuronal nitric oxide synthase: the calmodulin and output state perspective. J Phys Chem A. 2014;118(34):6864–6872.
  • Bowman PB, Puett D. Electron paramagnetic resonance spectroscopy of nitroxide-labeled calmodulin. Protein J. 2014;33(3):267–277.
  • Junker JP, Rief M. Single-molecule force spectroscopy distinguishes target binding modes of calmodulin. Proc Natl Acad Sci U S A. 2009;106(34):14361–14366.
  • Junker JP, Ziegler F, Rief M. Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science. 2009;323(5914):633–637.
  • McCarthy MR, Thompson AR, Nitu F, et al. Impact of methionine oxidation on calmodulin structural dynamics. Biochem Biophys Res Commun. 2015;456(2):567–572.
  • de Diego I, Kuper J, Bakalova N, et al. Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Sci Signal. 2010;3(106):ra6.
  • Hoffman L, Chandrasekar A, Wang X, et al. Neurogranin alters the structure and calcium binding properties of calmodulin. J Biol Chem. 2014;289(21):14644–14655.
  • Gotze M, Pettelkau J, Schaks S, et al. StavroX–a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom. 2012;23(1):76–87.
  • Yang B, Wu YJ, Zhu M, et al. Identification of cross-linked peptides from complex samples. Nat Methods. 2012;9(9):904–906.
  • Rinner O, Seebacher J, Walzthoeni T, et al. Identification of cross-linked peptides from large sequence databases. Nat Methods. 2008;5(4):315–318.
  • Xie J, Schultz PG. A chemical toolkit for proteins–an expanded genetic code. Nat Rev Mol Cell Biol. 2006;7(10):775–782.
  • Suchanek M, Radzikowska A, Thiele C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods. 2005;2(4):261–267.
  • Koberova M, Jecmen T, Sulc M, et al. Photo-cytochrome b(5) - A new tool to study the cytochrome P450 electron-transport chain. Int J Electrochem Sci. 2013;8(1):125–134.
  • Lossl P, Sinz A. Combining amine-reactive cross-linkers and photo-reactive amino acids for 3D-structure analysis of proteins and protein complexes. Methods Mol Biol. 2016;1394:109–127.
  • Piotrowski C, Ihling CH, Sinz A. Extending the cross-linking/mass spectrometry strategy: facile incorporation of photo-activatable amino acids into the model protein calmodulin in Escherichia coli cells. Methods. 2015;89:121–127.
  • Jurneczko E, Barran PE. How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 2011;136(1):20–28.
  • Konijnenberg A, Butterer A, Sobott F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim Biophys Acta. 2013;1834(6):1239–1256.
  • Liu F, Rijkers DT, Post H, et al. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat Methods. 2015;12(12):1179–1184.