848
Views
10
CrossRef citations to date
0
Altmetric
Review

Proteogenomic studies on cancer drug resistance: towards biomarker discovery and target identification

, , , , , & show all
Pages 351-362 | Received 09 Jan 2017, Accepted 21 Feb 2017, Published online: 06 Mar 2017

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
  • McDermott JE, Wang J, Mitchell H, et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn. 2013;7(1):37–51.
  • Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–162.
  • Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010;73(11):2092–2123.
  • Lawrence MS, Stojanov P, Mermel CH, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.
  • Helmy M, Sugiyama N, Tomita M, et al. Onco-proteogenomics: a novel approach to identify cancer-specific mutations combining proteomics and transcriptome deep sequencing. Genome Biol. 2010;11(Suppl 1):P17.
  • Ma B, Johnson R. De novo sequencing and homology searching. Mol Cell Proteomics. 2012;11(2):O111 014902.
  • Dasari S, Chambers MC, Slebos RJ, et al. TagRecon: high-throughput mutation identification through sequence tagging. J Proteome Res. 2010;9(4):1716–1726.
  • Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–421.
  • Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88.
  • Lin L, Bivona TG. Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemother Res Pract. 2012;817297:2012.
  • Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat Med. 2015;21(5):440–448.
  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics. 2004;4(1):59–77.
  • Menschaert G, Fenyo D. Proteogenomics from a bioinformatics angle: a growing field. Mass Spectrom Rev. 2015. doi:10.1002/mas.21483.
  • Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11(11):1114–1125.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.
  • Alfaro JA, Sinha A, Kislinger T, et al. Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat Methods. 2014;11(11):1107–1113.
  • Wicki A, Mandala M, Massi D, et al. Acquired resistance to clinical cancer therapy: a twist in physiological signaling. Physiol Rev. 2016;96(3):805–829.
  • Gottesman MM, Lavi O, Hall MD, et al. Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol. 2016;56:85–102.
  • Omenn GS, Yocum AK, Menon R. Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis Markers. 2009;28(4):241–251.
  • Sheynkman GM, Shortreed MR, Cesnik AJ, et al. Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem (Palo Alto Calif). 2016;9(1):521–545.
  • Castellana N, Bafna V. Proteogenomics to discover the full coding content of genomes: a computational perspective. J Proteomics. 2010;73(11):2124–2135.
  • Locard-Paulet M, Pible O, Gonzalez De Peredo A, et al. Clinical implications of recent advances in proteogenomics. Expert Rev Proteomics. 2016;13(2):185–199.
  • Ruggles KV, Tang Z, Wang X, et al. An analysis of the sensitivity of proteogenomic mapping of somatic mutations and novel splicing events in cancer. Mol Cell Proteomics. 2016;15(3):1060–1071.
  • Huang CH, Kuo CJ, Liang SS, et al. Onco-proteogenomics identifies urinary S100A9 and GRN as potential combinatorial biomarkers for early diagnosis of hepatocellular carcinoma. BBA Clinical. 2015;3:205–213.
  • Yeom J, Kabir MH, Lim B, et al. A proteogenomic approach for protein-level evidence of genomic variants in cancer cells. Sci Rep. 2016;6:35305.
  • Mann M, Kulak NA, Nagaraj N, et al. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49(4):583–590.
  • Bensimon A, Heck AJ, Aebersold R. Mass spectrometry-based proteomics and network biology. Annu Rev Biochem. 2012;81:379–405.
  • Ahrens CH, Brunner E, Qeli E, et al. Generating and navigating proteome maps using mass spectrometry. Nat Rev Mol Biol. 2010;11(11):789–801.
  • Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39(suppl_1):D945– D950.
  • Kim N, Shin S, Lee S. ECgene: genome-based EST clustering and gene modeling for alternative splicing. Genome Res. 2005;15(4):566–576.
  • Lane L, Argoudpuy G, Britan A, et al. neXtProt: a knowledge platform for human proteins. Nucleic Acids Res. 2011;40(Database issue):D76–83.
  • Kim P, Yoon S, Kim N, et al. ChimerDB 2.0—a knowledgebase for fusion genes updated. Nucleic Acids Res. 2010;38(suppl_1):81–85.
  • Amberger J, Bocchini CA, Scott AF, et al. McKusick’s Online Mendelian Inheritance in Man (OMIM®). Nucleic Acids Res. 2009;37(suppl_1):793–796.
  • Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–1120.
  • Park H, Bae J, Kim H, et al. Compact variant-rich customized sequence database and a fast and sensitive database search for efficient proteogenomic analyses. Proteomics. 2014;14(23–24):2742–2749.
  • Sun H, Chen C, Shi M, et al. Integration of mass spectrometry and RNA-Seq data to confirm human ab initio predicted genes and lncRNAs. Proteomics. 2014;14(23–24):2760–2768.
  • Ucciferri N, Rocchiccioli S. Proteomics techniques for the detection of translated pseudogenes. Methods Mol Biol. 2014;1167:187–195.
  • Brosch M, Saunders GI, Frankish A, et al. Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and “resurrected” pseudogenes in the mouse genome. Genome Res. 2011;21(5):756–767.
  • Li HD, Menon R, Omenn GS, et al. Revisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidence. Proteomics. 2014;14(23–24):2709–2718.
  • Edwards NJ. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression. Mol Syst Biol. 2007;3(1):102.
  • Ning K, Fermin D, Nesvizhskii AI. Computational analysis of unassigned high-quality MS/MS spectra in proteomic data sets. Proteomics. 2010;10(14):2712.
  • Li XH, Li C, Xiao ZQ. Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer. J Proteomics. 2011;74(12):2642–2649.
  • Ulrich Omasits MQ, Stekhoven DJ, Fortes C, et al. Directed shotgun proteomics guided by saturated RNA-seq identifies a complete expressed prokaryotic proteome. Genome Res. 2013;23(11):1916–1927.
  • Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502):575–581.
  • Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582.
  • Wu P, Zhang H, Lin W, et al. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver. J Proteome Res. 2014;13(5):2409–2419.
  • Shanmugam A, Yocum AK, Nesvizhskii AI. Utility of RNA-seq and GPMDB Protein observation frequency for improving the sensitivity of protein identification by tandem MS.  J Proteome Res. 2014;13(9):4113–4119.
  • Crappé J, Ndah E, Koch A, et al. PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Res. 2015;43(5):e29.
  • Menschaert G, Fenyö D. Proteogenomics from a bioinformatics angle: a growing field. Mass Spectrom Rev. 2015. doi:10.1002/mas.21483.
  • Tanner S, Shu H, Frank A, et al. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem. 2005;77(14):4626–4639.
  • Castellana NE, Pham V, Arnott D, et al. Template proteogenomics: sequencing whole proteins using an imperfect database. Mol Cell Proteomics Mcp. 2010;9(6):1260.
  • Saeed F. Big data proteogenomics and high performance computing: challenges and opportunities. In: IEEE global conference on signal and information processing. 2015. p. 141–145.
  • Geer LY, Markey SP, Kowalak JA, et al. Open mass spectrometry search algorithm. J Proteome Res. 2004;3(5):958–964.
  • Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20(9):1466–1467.
  • Vaudel M, Barsnes H, Berven FS, et al. SearchGUI: an open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics. 2011;11(5):996.
  • Castellana NE, Shen Z, He Y, et al. An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol Cell Proteomics. 2014;13(1):157–167.
  • Woo S, Cha SW, Na S, et al. Proteogenomic strategies for identification of aberrant cancer peptides using large-scale next-generation sequencing data. Proteomics. 2014;14(23–24):2719–2730.
  • Sanders WS, Wang N, Bridges SM, et al. The proteogenomic mapping tool. BMC Bioinformatics. 2011;12(1):115.
  • Ferro M, Tardif M, Reguer E, et al. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. J Proteome Res. 2008;7(5):1873–1883.
  • Menschaert G, Vandekerckhove TTM, Baggerman G, et al. A hybrid, de novo based, genome-wide database search approach applied to the sea urchin neuropeptidome. J Proteome Res. 2010;9(2):990–996.
  • Kuhring M, Renard BY. iPiG: integrating peptide spectrum matches into genome browser visualizations. PLoS One. 2012;7(12):e50246.
  • Peterson ES, Mccue LA, Schrimperutledge AC, et al. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data. BMC Genomics. 2012;13(1):1–13.
  • Brouwer RWW. MINOMICS: visualizing prokaryote transcriptomics and proteomics data in a genomic context. Bioinformatics. 2009;25(1):139–140.
  • Kumar D, Dash D. Proteogenomic tools and approaches to explore protein coding landscapes of eukaryotic genomes. Adv Exp Med Biol. 2016;926:1–10.
  • Helmy M, Tomita M, Ishihaha Y, et al. Peptide identification by searching large-scale tandem mass spectra against large databases: bioinformatics methods in proteogenomics. Genes. 2012;6(1):76–85.
  • Risk BA, Spitzer WJ, Giddings MC. Peppy: proteogenomic search software. J Proteome Res. 2013;12(6):3019–3025.
  • Jagtap PD, Johnson JE, Onsongo G, et al. Flexible and accessible workflows for improved proteogenomic analysis using the Galaxy framework. J Proteome Res. 2014;13(12):5898–5908.
  • Ghali F, Krishna R, Perkins S, et al. ProteoAnnotator–open source proteogenomics annotation software supporting PSI standards. Proteomics. 2014;14(23–24):2731–2741.
  • Nagaraj SH, Waddell N, Madugundu AK, et al. PGTools: a Software Suite for Proteogenomic Data Analysis and Visualization. J Proteome Res. 2015;14(5):2255–2266.
  • Krasnov GS, Dmitriev AA, Kudryavtseva AV, et al. PPLine: an automated pipeline for SNP, SAP, and splice variant detection in the context of proteogenomics. J Proteome Res. 2015;14(9):3729–3737.
  • Kumar D, Yadav AK, Jia X, et al. Integrated transcriptomic-proteomic analysis using a proteogenomic workflow refines rat genome annotation. Mol Cell Proteomics. 2016;15(1):329–339.
  • Khatun J, Yu Y, Wrobel JA, et al. Whole human genome proteogenomic mapping for ENCODE cell line data: identifying protein-coding regions. BMC Genomics. 2013;14(1):141.
  • Castellana NE, Payne SH, Shen Z, et al. Discovery and revision of textitArabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A. 2008;105(52):21034–21038.
  • Tanner S, Shen Z, Ng J, et al. Improving gene annotation using peptide mass spectrometry. Genome Res. 2007;17(2):231–239.
  • Tanner S, Shu H, Frank A, et al. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem. 2005;77(14):4626–4639.
  • Kim S, Gupta N, Pevzner PA. Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J Proteome Res. 2008;7(8):3354–3363.
  • Schnable P, Ware D, Fulton R, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–1115.
  • Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 2001;11(10):1660–1676.
  • Jeong K, Kim S, Bandeira N. False discovery rates in spectral identification. BMC Bioinformatics. 2012;13(Suppl 16 (16)):S2.
  • Kent WJ, Fan H, Karolchik D, et al. Exploring relationships and mining data with the UCSC Gene Sorter. Genome Res. 2005;15(5):737.
  • Branca RM, Orre LM, Johansson HJ, et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat Methods. 2014;11(1):59–62.
  • Sheynkman GM, Johnson JE, Jagtap PD, et al. Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations. BMC Genomics. 2014;15(1):703.
  • Mayer G, Montecchi-Palazzi L, Ovelleiro D, et al. The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary. Database. 2013;2013:bat009.
  • Vizcanío JA, Deutsch EW, Wang R, et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol. 2014;32(3):223–226.
  • Vizcanío JA, Côté RG, Csordas A, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in. Nucleic Acids Res. 2013;41(d1):1063–1069.
  • Goecks J, Nekrutenko A, Taylor J, et al. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.
  • Krishna R, Dong X, Sanderson S, et al. A large-scale proteogenomics study of apicomplexan pathogens—toxoplasma gondiiandNeospora caninum. Proteomics. 2015;15(15):2618–2628.
  • Krzywinski M, Schein J, Birol İ, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645.
  • Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–192.
  • Kim S, Mischerikow N, Bandeira N, et al. The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Mol Cell Proteomics Mcp. 2010;9(12):2840–2852.
  • Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics. 2013;13(1):22–24.
  • Bamford S, Dawson E, Forbes S, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91(2):355–358.
  • Paik YK, Jeong SK, Omenn GS, et al. The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nat Biotechnol. 2012;30(3):221–223.
  • Lane L, Bairoch A, Beavis RC, et al. Metrics for the human proteome project—2013-2014 and strategies for finding missing proteins. J Proteome Res. 2014;13(1):15–20.
  • Kumar D, Yadav AK, Kadimi PK, et al. Proteogenomic analysis of Bradyrhizobium japonicum USDA110 using GenoSuite, an automated multi-algorithmic pipeline. Mol Cell Proteomics. 2013;12(11):3388–3397.
  • Jones AR, Siepen JA, Hubbard SJ, et al. Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines. Proteomics. 2009;9(5):1220–1229.
  • Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–726.
  • Anderson W. International network of cancer genome projects. Nature. 2010;464(7291):993–998.
  • Yang YX, Sun XF, Cheng AL, et al. Increased expression of HSP27 linked to vincristine resistance in human gastric cancer cell line. J Cancer Res Clin Oncol. 2009;135(2):181–189.
  • Kang HC, Kim IJ, Park JH, et al. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(1):272–284.
  • Huang S, Holzel M, Knijnenburg T, et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. Cell. 2012;151(5):937–950.
  • Lee SY. Proteogenomic characterization of antimicrobial resistance in extensively drug-resistant Acinetobacter baumannii DU202. J Antimicrob Chemother. 2014;69(6):1483–1491.
  • Woo S, Cha SW, Bonissone S, et al. Advanced proteogenomic analysis reveals multiple peptide mutations and complex immunoglobulin peptides in colon cancer. J Proteome Res. 2015;14(9):3555–3567.
  • Halvey PJ, Wang X, Wang J, et al. Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair. Cancer Res. 2014;74(1):387.
  • Bertotti A, Papp E, Jones S, et al. The genomic landscape of response to EGFR blockade in colorectal cancer. Nature. 2015;526(7572):263–267.
  • Ahronian LG, Sennott EM, Van Allen EM, et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 2015;5(4):358–367.
  • Wiegand KC, Hennessy BT, Leung S, et al. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation. BMC Cancer. 2014;14:120.
  • Duan Z, Feller AJ, Penson RT, et al. Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8, and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res. 1999;5(11):3445–3453.
  • Thomsen KG, Lyng MB, Elias D, et al. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients. Breast Cancer Res Treat. 2015;154(3):483–494.
  • Hansen SN, Ehlers NS, Zhu S, et al. The stepwise evolution of the exome during acquisition of docetaxel resistance in breast cancer cells. BMC Genomics. 2016;17:442.
  • Stewart PA, Parapatics K, Welsh EA, et al. A pilot proteogenomic study with data integration identifies MCT1 and GLUT1 as prognostic markers in lung adenocarcinoma. PLoS One. 2015;10(11):e0142162.
  • Kim YI, Lee J, Choi YJ, et al. Proteogenomic study beyond chromosome 9: new insight into expressed variant proteome and transcriptome in human lung adenocarcinoma tissues. J Proteome Res. 2015;14(12):5007–5016.
  • Ahn SM, Jang SJ, Shim JH, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014;60(6):1972–1982.
  • Brenner H, Kloor M, Pox CP. Colorectal cancer. The Lancet. 2014;383(9927):1490–1502.
  • Van Cutsem E, Cervantes A, Nordlinger B, et al. Group EGW. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncology: Official Journal Eur Soc Med Oncol. 2014;25(Suppl 3):iii1–9.
  • Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–536.
  • Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clinical Oncology: Official Journal Am Soc Clin Oncol. 2008;26(10):1626–1634.
  • Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–1857.
  • Montagut C, Dalmases A, Bellosillo B, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18(2):221–223.
  • De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet. Oncol. 2010;11(8):753–762.
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra224.
  • Bardelli A, Corso S, Bertotti A, et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 2013;3(6):658–673.
  • Taking pan-cancer analysis global. Nat Genet. 2013:45(11):1263–1263.
  • Ai J, Tang Q, Wu Y, et al. The role of polymeric immunoglobulin receptor in inflammation-induced tumor metastasis of human hepatocellular carcinoma. J Natl Cancer Inst. 2011;103(22):1696–1712.
  • Wang T, Srivastava S, Hartman M, et al. High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget. 2016;7:34.
  • Hu H, Li S, Cui X, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting Heparin Sulfate Proteoglycan 2 (HSPG2). J Biol Chem. 2013;288(16):10973–10985.
  • Jiang Y, Chen Y, Wang C, et al. Phenylarsine oxide can induce the arsenite-resistance mutant PML protein solubility changes. Int J Mol Sci. 2017;18(2):247.
  • Donato MD, Fanelli M, Mariani M, et al. Nek6 and Hif-1α cooperate with the cytoskeletal gateway of drug resistance to drive outcome in serous ovarian cancer. Am J Cancer Res. 2015;5(6):1862–1877.
  • Yılmaz I, Ozkok A, Kostek O, et al. C-reactive protein but not hepcidin, NGAL and transferrin determines the ESA resistance in hemodialysis patients. Ren Fail. 2016;38(1):89–95.
  • Diouf B, Cheng Q, Krynetskaia NF, et al. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat Med. 2011;17(10):1298.
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954.
  • Mao M, Tian F, Mariadason JM, et al. Resistance to BRAF inhibition in BRAF-mutant colon cancer can be overcome with PI3K inhibition or demethylating agents. Clin Cancer Res. 2013;19(3):657–667.
  • Jacobs IJ, Menon U, Ryan A, et al. Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. The Lancet. 2016;387(10022):945–956.
  • Jayson GC, Kohn EC, Kitchener HC, et al. Ovarian cancer. The Lancet. 2014;384(9951):1376–1388.
  • Coleman RL, Monk BJ, Sood AK, et al. Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 2013;10(4):211–224.
  • Griffiths RW, Zee YK, Evans S, et al. Outcomes after multiple lines of chemotherapy for platinum-resistant epithelial cancers of the ovary, peritoneum, and fallopian tube. Int J Gynecol Cancer. 2011;21(1):58–65.
  • Sarwal MM, Sigdel TK, Salomon DR. Functional proteogenomics–embracing complexity. Semin Immunol. 2011;23(4):235–251.
  • Tibes R, Qiu YH, Lu Y, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5(10):2512.
  • Liu X, Gao Y, Lu Y, et al. Oncogenes associated with drug resistance in ovarian cancer. J Cancer Res Clin Oncol. 2015;141(3):381–395.
  • Yan B, Yin F, Wang QI, et al. Integration and bioinformatics analysis of DNA-methylated genes associated with drug resistance in ovarian cancer. Oncol Lett. 2016;12(1):157–166.
  • Harbeck N, Gnant M. Breast cancer. The Lancet. 2016.
  • Gruver AM, Portier BP, Tubbs RR. Molecular pathology of breast cancer: the journey from traditional practice toward embracing the complexity of a molecular classification. Arch Pathol Lab Med. 2011;135(5):544–557.
  • Bravata V, Cammarata FP, Forte GI, et al. “Omics” of HER2-positive breast cancer. Omics. 2013;17(3):119–129.
  • Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028.
  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. The Lancet. 2012;379(9822):1245–1255.
  • Proteogenomics sheds light on tumors. Cancer Discov. 2014:4(10):1108.
  • Ellis MJ, Gillette M, Carr SA, et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013;3(10):1108–1112.
  • Polyakova A, Kuznetsova K, Moshkovskii S. Proteogenomics meets cancer immunology: mass spectrometric discovery and analysis of neoantigens. Expert Rev Proteomics. 2015;12(5):1–9.
  • Kang MG, Byun K, Kim JH, et al. Proteogenomics of the human hippocampus: the road ahead ☆. Bba-Proteins Proteom. 2015;1854(7):788–797.
  • Barbieri R, Guryev V, Brandsma CA, et al. Proteogenomics: key driver for clinical discovery and personalized medicine. Adv Exp Med Biol. 2016;926:21–47.
  • Bragazzi NL, Pechkova E, Nicolini C. Chapter four – proteomics and proteogenomics approaches for oral diseases. Adv Protein Chem Structural Biol. 2014;95(95):125–162.
  • Malmström L, Bakochi A, Svensson G, et al. Quantitative proteogenomics of human pathogens using DIA-MS. J Proteomics. 2016;129:98–107.
  • Kim YI, Lee J, Choi YJ, et al. Proteogenomic study beyond chromosome 9: new insight into expressed variant proteome and transcriptome in human lung adenocarcinoma tissues. J Proteome Res. 2015;14(12):5007–5016.
  • Barnidge DR, Tschumper RC, Theis JD, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. J Proteome Res. 2014;13(4):1905–1910.
  • Faulkner S, Dun MD, Hondermarck H. Proteogenomics: emergence and promise. Cell Mol Life Sci. 2015;72(5):953–957.
  • Ehmsen S, Hansen LT, Bak M, et al. S100A14 is a novel independent prognostic biomarker in the triple-negative breast cancer subtype. Int J Cancer. 2015;137(9):2093–2103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.